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Abstract

The accuracy of corporate earnings forecasts is essential for making informed financial
decisions. While analysts’ predictions are commonly used for these forecasts, their
accuracy remains a concern. This research addresses this issue by leveraging a rolling-
window random forest model from Van Binsbergen et al. (2023). This model integrates
analysts’ forecasts with other financial data to enhance prediction accuracy. Our re-
search has two main goals. First, we replicate and validate the findings of the paper
mentioned above. We confirm the presence of a positive conditional bias, which means
analysts tend to be overly optimistic, especially for longer forecasts. Second, we explore
the factors influencing the conditional bias and identify the importance of information
availability and regulations. Our findings suggest that greater analyst involvement and
effective regulations are associated with reduced bias. This opens doors for further re-
search on analyst behavior, regulatory effectiveness, and the development of even more
accurate forecasting methods.

KEY WORDS: Earnings Forecasting, Conditional Bias, Random Forest Regression,
Fair Disclosure Regulation, Information Asymmetry
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I Introduction

I. Introduction

Numerous finance theories suggest that the equity value of a company is intrinsically linked
to the cash flows expected by its shareholders (see Koller, Goedhart, Wessels et al. (2010)).
However, practitioners often use companies’ earnings as a proxy for these cash flows. There-
fore, one may immediately see that accurately forecasting firms’ earnings is an essential
input to calculate their equity value. Motivated by the importance of this real-life appli-
cation, there have been numerous academic attempts to make these forecasts as accurate
as possible. Nonetheless, as documented by Kothari et al. (2016) in an extensive review of
these methods, their out-of-sample performance tends to be quite poor.

In an effort to improve corporate earnings predictions, Van Binsbergen et al. (2023)
introduced a machine learning model that combines analysts’ forecasts with other relevant
financial factors to generate enhanced earnings predictions. The contribution of the authors
is twofold. Firstly, they successfully provide a model which outputs superior out-of-sample
results compared to commonly used linear earnings models. Secondly, they employ the results
of their model to investigate the conditional bias present in analysts’ forecasts. Crucially, the
bias is conditional, indicating that the analysts’ forecasts, which are employed as predictors,
are compared to the results of the model and not to the actual ground truth values. The
comparison and the further analysis aim at depicting the bias between the analysts and the
statistically unbiased model.

The machine learning model used in the original paper is a random forest. The choice
is justified by the ability of random forests in capturing nonlinear relationships and being
robust to overfitting. As anticipated, the model predictors are the analysts’ predictions, the
financial ratios from the companies’ balance sheets and other macroeconomic variables. The
choice of using analysts’ predictions as input implies that the model effectively attempts to
improve these forecasts, rather than generating them from nothing.

In Van Binsbergen et al. (2023) the authors observe that the conditional bias of analysts is,
on average, positive and increases as the forecast horizon becomes longer. This result is highly
relevant as it implies that analysts tend to be overoptimistic, which could undermine the
accuracy of their forecasts. The authors do not dive deep into the reasons behind the observed
conditional bias and their study is limited to acknowledging its presence. Moreover, as of
June 2024, the authors’ source code has not been made public, implying that a replication
based on the paper is necessary to examine, validate and further improve their findings.

In this dissertation, we firstly replicate the model of Van Binsbergen et al. (2023)1. We
use our implementation to verify the reproducibility of their results and find that they can
be reproduced within a small margin of error. In particular, our results confirm that the
machine learning model described in the orginal paper can produce forecasts which are more
accurate than analysts’ ones. Moreover, the results also give credibility to the authors’
finding that analysts’ forecasts tend to be overoptimistic (i.e. positively biased) when com-
pared to the statistically optimal benchmark obtained via the random forest regression, and
their tendency towards overoptimism intensifies with longer forecast horizons. We further
investigate the inner workings of our model by examining the feature importance of various
predictors. This allows to compare our model to the original one, validating our replication
and concluding that both models attribute high importance to the same set of features. In
addition, by studying the time series evolution of analysts’ conditional bias, we confirm the
existence of the historical patterns observed by Van Binsbergen et al. (2023).

1Our source code is publicly available at https://github.com/NicoloMarsucco/Man-vs-machine
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I Introduction

With the aim of expanding the investigation on the conditional bias begun by the original
paper, we further analyze the results obtained by our model. We find evidence suggesting
that analysts’ conditional bias decreases as the information set regarding a company becomes
larger. Moreover, a closer inspection of the time series plots suggests that the conditional
bias is influenced by the introduction of new regulations, specifically the adoption of the
Regulation on Fair Disclosure by the US Securities and Exchange Commission in 2000. We
implement statistical tools to test these hypotheses and find quantitative evidence supporting
our claims.

This dissertation is structured as follows. In Section II, we present a concise literature
review of the most influential papers relevant to our research. In Section III, we describe the
methodology we adopt to replicate the results of the original paper. Furthermore, in this
section, we introduce the methodology used to further study the conditional bias. Section
IV presents the results of the exploratory data analysis that we conducted before testing the
replication of the model. Lastly, in Section V, we present and discuss the results obtained
by replicating the model of the original paper, as well as from our further study of the
conditional bias.

2



II Literature Review

II. Literature Review

The importance of forecasting firms’ earnings, discussed in the previous section, makes it un-
surprising that the investment community has long been interested in accurately forecasting
companies’ earnings (Johnson & Schmitt 1974). In this section, we present a brief review of
some of the most popular conventional models used to forecast companies’ earnings. By us-
ing the term conventional, we mean that these models only use information that is relatively
easy to obtain, such as variables from financial statements or publicly known macroeconomic
indicators. In other words, we do not consider models exploiting the so-called alternative
datasets, such as the one using satellite imagery developed by Yu et al. (2023).

As outlined by Monahan (2018) in their comprehensive review of earnings forecasting
methods, these methods fall into two main categories depending on the approach used. The
first approach, the one most prominent in the early literature on the topic, is to treat the
problem as a time-series problem of earnings alone. To put it differently, studies falling in
this category attempt to use previous realisations of firms’ earnings to forecast future earn-
ings. This approach gives rise to what we call2 time-series models, which we discuss further
in Section A. However, more recent studies favor the panel-data approach. (as termed by
Monahan (2018)). These models leverage both cross-sectional and time-series data for fore-
casting. We explore some examples of panel-data models in Section B. This review provides a
foundation for understanding the challenges associated with forecasting firm earnings, which
we summarize in Section C.

A. Time-Series Models

This first formulation of the problem implicitly assumes that the future value of the earnings
per share is a function of the past N realisations of the earnings per share. Although this
treatment is, on a conceptual level, fairly intuitive, the models used are often fairly complex.
For example, Jarrett (1989) compares the use of the Holt-Winters method, the Box-Jenkins
method, and autoregressions of de-seasonalised data. They find that, even though some of
these methods perform relatively well on certain stocks, none of them can be considered to
be universally desirable (Jarrett 1989). Another example is the work done by Albrecht et al.
(1977); here, the authors compare forecasts made using the Box-Jenkins method to those
made by analysts and they find that the former can be more accurate than the latter but
only in very specific settings. Supporting the notion that the Box-Jenkins method does not
always yield accurate results, Watts & Leftwich (1977) suggest that a random walk model
tends to perform better than the Box-Jenkins method.

Further evidence comes from Callen et al. (1996), who compare the Brown-Rozeff model,
the Griffin-Watts (Foster) model, and a neural network. Their findings indicate that simpler
linear models (Brown-Rozeff and Griffin-Watts) outperform the neural network, suggesting
that linear approaches may be more suitable for this specific time-series problem. The
complexity of this forecasting problem is also emphasised by Bradshaw et al. (2012), who
find that a random walk model often yields more accurate long-term forecasts than analysts’
predictions. One interesting property of earnings time-series highlighted by Lipe & Kormendi
(1994) is that they seem to exhibit a mean-reversion property. However, this observation
is challenged by Ball & Watts (1972), who suggest that annual earnings appear to follow a
submartingale.

2This nomenclature is also taken from Monahan (2018).
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II Literature Review

Overall, as noted by Monahan (2018), the random-walk time-series model appears to be
the best for forecasting earnings using a time-series approach. This result highlights the
poor performance of models built using this approach, suggesting that it may be suitable to
approach differently this forecasting problem.

B. Panel-Data Models

As already mentioned, the models using the panel-data approach attempt to forecast firms’
earnings by using cross-sectional data (e.g. financial statements data, macroeconomic data,
industry specific data etc.) from various time-steps. Due to significant advancements in
computational power and limitations of time-series methods, recent models have shifted
towards this approach (Green & Zhao 2022).

One of the most influential papers falling in this category is the one written by Fama &
French (2000). In this study, the authors perform a nonlinear regression using variables such
as dividend paid and difference between expected and realised earnings to try to forecast
earnings. The resulting model is relatively complex and aims to exploit the mean reversion
property of companies’ profitability. According to Fama & French (2000), this model is
capable of predicting changes in earnings caused by this mean reversion property; however,
they also acknowledge that the model fails to capture all changes in earnings, especially
when these are extreme. This model was then further developed by Hou et al. (2012), Li &
Mohanram (2014) and finally by Hess & Wolf (2014). Nonetheless, all these models appear
to be unable to consistently perform better than analysts.

In recent years, more computationally expensive machine learning models have been used.
For instance, Zhang et al. (2004) propose a neural network to forecast companies’ earnings
using fundamental accounting variables and they compare it to various linear models. Their
work suggests that neural networks tend to perform better than linear models for this type
of forecasting. Cao & Parry (2009) further develop this neural network model and find that
it can be made more accurate by training it using a genetic algorithm rather than through
back propagation.

Another example of the application of complex machine learning models to this problem
is presented by De Silva & Thesmar (2024). In their study, the authors select financial ratios,
industry indicator variables, and information regarding the stock’s price history as inputs to
use to make their forecast. They then feed these inputs to various models to see which one
performs best. More specifically, they compare the use of the following models: random walk
model, elastic net, random forest and boosted trees. They find that, on average, analysts
perform better than all these models considered. Encouragingly, their results align with
our chosen methodology. They identify the random forest model as consistently achieving
the highest accuracy among those considered. This finding strengthens the rationale for
replicating the work of Van Binsbergen et al. (2023), who themselves employed a random
forest to enhance the efficacy of earnings forecasts.

De Silva & Thesmar (2024) are not alone in highlighting the poor performance of complex
models using a panel-data approach for forecasting firms’ earnings. For example, Gerakos &
Gramacy (2013) find that a random walk model tends to perform roughly as well as a model
using a large set of predictors. Therefore, it appears there is no unique go-to panel-data
model which consistently outperforms analysts’ forecasts. Our investigation suggests that
the inherent complexities of forecasting firm earnings contribute to this observed discrepancy
between predicted and actual values. We explore these complexities in the next section.
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C. Challenges

Green & Zhao (2022) present a very lucid description of the challenges which make creating
a reliable model for forecasting companies’ earnings such a difficult task. We summarise
below their description of these challenges, as they are useful to understand some of the
choices we make in our work.

The first challenge, which may be deduced from the findings presented in the previous
sections, is that, in spite of the numerous collective efforts to develop models to forecast earn-
ings, these models are only capable of explaining a small part of the variations in earnings.
In other words, earnings appear to be, to a significant degree, unpredictable. This may not
come as a surprise given the number of factors which could affect earnings. It is worth noting
that the information set used by many of the models presented tends to be backward-looking
while, to forecast earnings, it would probably be useful to incorporate some forward-looking
measures as well (such as analysts’ forecasts). As a result, any new model attempting to
forecast earnings needs to be able to deal with this challenge.

The second challenge relates to the fact firms’ earnings tend to a have a low signal-to-
noise ratio. Therefore, the amount of noise present in the time-series of earnings is so large
that it makes it difficult to observe patterns and make accurate forecasts. Consequently, a
model for predicting companies’ earnings must be able to filter useful information from the
high amount of noise.

The third and final challenge has to do with the model uncertainty. In other words, it
is not unreasonable to suggest that, in light of an ever-changing economic, regulatory and
accounting landscape, the model and its parameters may change in time. This final challenge
adds a new layer of complexity to the problem and, together with the other above-mentioned
factors, motivates the need for further research in the field of earnings forecasts.

5
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III. Methodology

This section outlines the methodology employed to replicate and extend the work presented
by Van Binsbergen et al. (2023). In Section A we begin by presenting the datasets used.
Then, in Section B, we illustrate the data engineering process defined to obtain a set of
observations as similar as possible to the one proposed in the original paper. Afterwards,
in Section C, we describe the model used by the original authors. Lastly, in Section D,
we present the methodology which we employ to extend the work presented in the original
paper. Put differently, Sections A to C deal with explaining how we replicate the results
of the original paper, while Section D introduces our approach for further studying the
conditional bias.

A. Datasets

The first step towards replicating the original paper consists in obtaining the data from
the same databases. These databases are summarised in Table 1; this table also indicates
what type of data each database provides. The time period considered is the same one of
the original paper, going from the first day of January 1985 to the last day of December
2019. All the data in these databases are about U.S. stocks and the U.S. economy; hence,
all these variables (except for the financial ratios and some macroeconomic variables) are
denominated in USD. However, to improve readability, we do not report the unit in the
examples we present.

Table 1: Databases used and types of data obtained from each database.

Type of data Database

Realised earnings & analysts’ forecasts I/B/E/S
Monthly stock prices CRSP
Financial ratios I/B/E/S
Macroeconomic variables Federal Reserve Bank of Philadelphia

B. Data Engineering

Transforming the datasets mentioned in Table 1 into a set of usable ones is a complicated
process which requires a solid understanding of the type of data contained in each dataset.
Hence, in Sections B.1 to B.4, we describe the type of data that can be obtained from each
dataset and the transformations that we apply to each, following the original paper. Then,
in Section B.5, we describe how we merge the various datasets into a single one to be fed to
the machine learning model.

B.1. Realised Earnings & Analysts’ Forecast

This dataset provides the values of the realized (diluted) earnings per share (EPS) for each
company, as well as the average forecasted (diluted) EPS. More details regarding the variables
contained in this dataset are presented in Table 2, which also includes an example entry.
This example highlights that, in certain instances, even though the forecast horizon is one
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quarter, the forecast was effectively made less than a month before the company announced
its earnings results. Similarly, not all forecasts for the two-quarter forecast horizon were
made exactly two quarters before the company announced its earnings results, and so on
for all the forecasting periods. Furthermore, it is also important to highlight that, when the
forecast horizon is equal to one, two or three quarters, the realised earnings are reported in
quarterly values, while when the forecast horizon is equal to one or two years, the realised
earnings are reported in annualised values.

Since the values of realised earnings are rounded to the nearest cent, we follow Van Bins-
bergen et al. (2023) in using the cumulative adjustment factor cfacshr (obtained from the
CSRP database) to try to decrease the rounding errors. Therefore, if the consensus estimate
is calculated at time t−τ and the earnings are announced at time t, then the value of realised
earnings can be adjusted as follows:

actual adjustedt = actualt ×
cfacshrt−τ

cfacshrt
(1)

Furthermore, for reasons explained in the Exploratory Data Analysis section (Section IV),
we trim the dataset by removing 1% outliers. Finally, the model in the original paper also
uses the most recent earnings realisation as an input, so we create a new column (labelled
adj past eps) where we insert the most recent value of realised earning for each company.
Care was taken to prevent possible data leakage; we specifically made sure that the an-
nouncement date of the previous earnings was always before or equal to the date of when
the average analysts’ forecast was computed.

Table 2: Explanation of the meaning of the variables obtained from the I/B/E/S database,
created using the information available at Dai (2020). The last column of this table shows
a sample entry. The relationship between the forecast horizon identifier and the forecast
horizon is the following: the forecast horizon is one quarter when fpi=6, two quarters when
fpi=7, three quarters when fpi=8, one year when fpi=1 and two years when fpi=2.

Variable Meaning
Example

entry

ticker Ticker of the company 0000
cusip 9-digit company identifier 87482X10
cname Name of the company Talmer Bancorp
fpedats Fiscal period end date 31/03/2014
statpers Date of when the analysts’ average forecast was calculated 17/04/2014
meanest Average analyst forecast of the companies’ earnings 0.08
actual Realised earnings (expressed as diluted EPS) 0.12
anndats act Date of when the company announces its earnings 06/05/2014
fpi Forecast horizon identifier 6
numest Number of analyst estimates used to compute meanest 4

B.2. Monthly Stock Prices

We present the meaning of the variables obtained from the CRSP database in Table 3. Just
as before, this table contains an example entry in the last column.

7
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Table 3: Explanation of the meaning of the variables obtained from the CRSP database
and a sample entry. This table was created using the information provided by the Wharton
Research Data Services.

Variable Meaning
Example

entry

permno CRSP security identifier 10001
cusip 9-digit company identifier 36720410

date
Date of when the price was recorded
(last business day of the month)

30/10/1987

ret Most recent monthly return of the stock 0.0200
prc Share price 6.3750
cfacshr Cumulative adjustment factor 3

B.3. Financial Ratios

The financial ratios were also obtained from the I/B/E/S database. Because there are about
80 financial ratios for each company, we do not list the meaning of each one. Readers
who wish to understand their meanings are invited to refer to the I/B/E/S documentation.
Rather, we only present an example of an entry of this database to better illustrate the
modifications made. This example is shown in Table 4.

The first change that we make to this dataset is to drop the financial ratios labelled
PEG 1yrforward, PEG ltgforward, pe op basic and pe op dil because they are missing
too many data points. Then, we fill the missing financial ratios using the median of the
same column of the companies from the the same industry group (indicated by the variable
ffi49) from the same time step. For example, consider the observation shown in Table 4.
Assume that this entry is missing the value for the financial ratio labelled capital ratio.
Then, to fill this value, we would use the median of the values of capital ratio of all the
tech companies (ffi=35) which reported their earnings in September 2000 (same month as
public date).

Finally, for each company, we interpolate in time the values of the financial ratios. To do
this, we assume that all the financial ratios remain constant until the company has a new
earning announcement.

Table 4: Example of an entry obtained from the dataset containing the financial ratios
from the I/B/E/S database. The first three columns (permno, ticker and cusip) represent
three identifiers for the stock. The variable public date tells the date of when the company
shared its financial statements, i.e. when the financial ratios became public. The columns
in Financial ratios (not shown in this table) represent the financial ratios which Apple
reported on 30/09/2000. Finally, the integer in the column ffi49 tells in which of the
49 Fama-French industry groups Apple belongs (in this case, it belongs to group 35 which
includes companies manufacturing computer hardware). For more details on this industry
classification, please refer to French (2020).

permno ticker cusip public date Financial ratios ffi49

14593 AAPL 3783310 30/09/2000 . . . 35

8
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B.4. Macroeconomic Variables

In the original paper, the authors do not fully explain how they transform the datasets
containing the values of the macroeconomic variables into usable ones to be fed to the
random forest model. Therefore, we outline below the steps which we take to complete this
transformation.

Once downloaded, each one of the four macroeconomic variables (consumption, Gross
Domestic Product, Industrial Production Index and unemployment rate) presents itself in
a table such as the one shown in Figure 1 (this table specifically contains the values of
consumption). In this table, the name of the column communicates when the statistics was
computed while the name of the row indicates to which period it refers. For example, the
entry in the top left corner of this table shows that the estimate for the value of consumption
of the fourth quarter (Q4) of 1965 (deducible from the row name) in the fifth month of 1966
(deducible from the last 4 characters of the column title) was 403.3. This value was later
revised; indeed, in August 1966 the estimate for the value of consumption for the fourth
quarter of 1966 was revised to 406.5 (see 1st row, 4th column). Note that some values are
not available. This indicates that the value of the indicator was not yet available for that
specific period. For example, in May 1966, the estimate for the value of consumption for the
first quarter of 1966 (see the 2nd row, 1st column) was not yet available.

Figure 1: Example of the format of the dataset provided by the Federal Reserve Bank of
Philadelphia. These values specifically refer to the US consumption.

The data provided by Van Binsbergen et al. (2023) offers valuable insights, but requires
conversion into a time-series format for further analysis. Since the authors don’t specify
the original time-series structure, we adopt a consistent approach: using the most recently
available estimate for each variable at each time step. This methodology, applied to the data
in Figure 1, yields the time series depicted in Figure 2. We employ this strategy for all four
datasets encompassing the macroeconomic variables.

Figure 2: Example of how we transform the datasets from the Federal Reserve Bank of
Philadelphia into a time-series format.

Finally, we calculate the logarithm of the difference for all macroeconomic time series
except the unemployment rate. For example, for the values of consumption, we apply the
following transformation:

Consumption log returnt = ln

(
consumptiont
consumptiont−1

)
(2)

9
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B.5. Merging and Splitting the Datasets

The final step consists in merging the various datasets described in the previous sections.
Since the original paper does not detail the merging process, we adopt the methodology
outlined in Figure 3. We believe this approach represents a natural and robust way to
combine the data. We take great care to avoid data leakage and to make sure that the
merging considered the dates of when the information became public, rather than the end
date of the corresponding fiscal period. After merging the datasets into a single one, we split
it into five separate datasets based on the forecast horizon.

Figure 3: Illustration of the merging process. We use the notation Var(Database) to
indicate that the variable Var comes from the database labelled Database.

C. The Model

Following Van Binsbergen et al. (2023)’s approach of leveraging a random forest model
to enhance analyst forecasts, we dedicate this section to explain the underlying concepts.
Section C.1 delves into the fundamentals of regression trees and random forest regressions.
Next, Section C.2 examines the model proposed in the original paper in detail. We unpack
its specific functionalities, particularly its role in calculating the conditional bias, a crucial
factor to investigate analysts’ forecasts.

10
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C.1. Regression Trees & Random Forest Regressions

Regression trees3 are a machine learning technique to solve regression problems. They work
by recursively partitioning the input space into smaller regions based on specific features.
Within each region, the model predicts a constant value for the target variable y. This
behaviour allows regression trees to capture non-linear relationships between the features
and the output.

Let us denote the output of the regression tree for an input vector x ∈ RK as ŷ. The tree
can be described by the following equation:

ŷ = frt(x) =
M∑

m=1

ĉmI(x ∈ Rm) (3)

where:
• M represents the total number of terminal nodes (or leaves) in the tree.
• Rm denotes the region (defined by a specific set of splitting rules) in the feature space
that corresponds to leaf node m.

• ĉm represents the constant value predicted by the model in region Rm.
• I(x ∈ Rm) is the indicator function, which equals 1 if the data point x is in the region
Rm and 0 otherwise.

The optimal value of ĉm in each region depends on the chosen loss function used in the
training. By setting the loss function equal to the mean squared error (MSE), it can be
shown that optimal value of ĉm becomes the average of the target variable values for the
data points within that region:

ĉm =

∑N
i=1 yiI(x ∈ Rm)∑N
i=1 I(x ∈ Rm)

(4)

where:
• yi represents the target variable value for the i-th data point.
• N represents the total number of data points in the dataset.
Equation 4 shows that, while calculating the constant value for each region is simple

after the split, the key challenge is determining which feature (denoted by j) to split on and
at what value (denoted by s). This split will create two new regions R1 and R2 defined as
follows:

R1(j, s) = {X|Xj ≤ s} (5)

R2(j, s) = {X|Xj > s} (6)

To determine the best split, the algorithm solves an optimization problem: it finds the
splitting point s for every feature and then it picks the pair (j, s) which yield the lowest
MSE. The equation to minimise is shown below:

min
j,s

min
ĉ1

∑
xi∈R1(j,s)

(yi − ĉ1)
2 +min

ĉ2

∑
xi∈R2(j,s)

(yi − ĉ2)
2

 (7)

3The mathematical treatment of regression trees and random forest regressions is taken from Hastie et al.
(2009).
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The tree continues to grow until it meets a criterion specified by the user. Common stopping
criteria include:

• Minimum Node Size: this criterion stops tree growth when a further split would result
in child nodes with fewer data points than a specified threshold.

• Maximum Tree Depth: this criterion limits the maximum depth of a tree, preventing
excessive complexity.

The extension from regression trees to random forest is relatively straightforward. The
principle behind random forests regressions is to train a lot of approximately unbiased re-
gression trees and then average their predictions to reduce the variance of the model (the
bias is, however, unchanged). In order to obtain uncorrelated trees, each tree is trained using
the following algorithm:

1. First, select a bootstrap sample of the training data
2. Second, choose k of the K features at random
3. Third, train the random tree using the bootstrapped sample from Step 1 and the

variables chosen in Step 2. The tree is then grown until a stopping criterion is met.
The final prediction of a random forest regression model, denoted by ŷ or frf (x), is calcu-

lated by averaging the predictions of all the individual trees in the ensemble. Mathematically,
this can be expressed as:

ŷ = frf (x) =
1

B

B∑
b=1

Tb(x) (8)

where:
• ŷ or frf (x) represents the predicted value for a given input vector x.
• B represents the total number of trees in the random forest.
• Tb(x) represents the prediction made by the b-th individual tree in the forest when
presented with the input vector x.

C.2. Details of the Model

This section focuses on the model employed to forecast adjusted EPS. We delve into its inner
workings and how it utilizes the data prepared in the data engineering section as inputs for
this prediction task.

Letting ML Forecastt+τ
i,t be the random forest forecast of the EPS of company i made at

time t to predict the results for the fiscal period ending at time t+ τ , where τ represents the
forecast horizon, the regression takes the form of the equation shown below:

ML Forecastt+τ
i,t = frf

(
Fundamentalsi,t,Macrot,Analysts Forecastt+τ

i,t

)
(9)

In this equation, frf(. . . ) indicates the random forest model which uses the financial ratios
(Fundamentalsi,t) of company i, the macroeconomic variables (Macrot), and the average
analysts’ forecast (Analysts Forecastt+τ

i,t ) for company i available at time t with the same
forecast horizon τ of the model.

One key characteristic of this model is its temporal dependency. In other words, the model
is retrained periodically to incorporate the latest information. Specifically, for each forecast
horizon, the model is retrained monthly using the most recent 12 months of data. However,
for a two-year forecast horizon, the model leverages a larger window of the most recent 24
months of data to capture longer-term trends. Figure 4 provides a visual representation of
this rolling window training and testing methodology.
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The model’s output for the test window is then used to calculate the conditional bias.
This metric, denoted by Conditional Bias, reflects the difference between the average analyst
forecast and the machine learning prediction, scaled by the company’s share price at the time
the analyst forecast is made. The mathematical formula for conditional bias is presented
below:

Conditional Biast+τ
i,t =

Analysts Forecastt+τ
i,t −ML Forecastt+τ

i,t

Pricei,t−1

(10)

where Pricei,t−1 represents the share price of company i at the end of the month before
the analysts’ average forecast is calculated.

To further illustrate the functionality of the machine learning model, Algorithm 1 presents
the training and testing process in pseudocode format.

Table 5: Hyper-parameters used for the random forest.

Number of trees 2000
Maximum depth 7
Sample fraction 1%
Minimum node size 5

Figure 4: Illustration of the rolling window method used to train and test the random
forest. This diagram shows what are the first two training and test time periods for the
models trained using 12 months of data.
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Algorithm 1 Pseudocode of the algorithm used to train and test the model.

1: procedure TrainTestRandomForest(X, Y )
2: for forecast horizon in {3 months, 6 months, 9 months, 12 months, 24 months} do
3: if forecast horizon = 24 months then
4: Ttrain ← 24 months ▷ The length of the training period is 24

months for the 2-years forecast horizon
5: else
6: Ttrain ← 12 months ▷ For all others forecast horizons, the length

of the training period is 12 months
7: end if
8: ttrain ← 01/1985 ▷ Set the beginning of first rolling window to

January 1985
9: Ttest ← 1 month ▷ Set the length of the test period equal to 1

month
10: while ttrain ≤ 12/2018 do ▷ While the rolling window is in the correct

time-period
11: ttest ← ttrain + Ttrain ▷ Update beginning of test period
12: Xtrain ← X|ttrain ≤ t < ttest ▷ Find the input matrix for the training
13: Ytrain ← Y |ttrain ≤ t < ttest ▷ Find the output matrix for the training
14: Xtest ← X|ttest ≤ t < ttest + Ttest ▷ Find the input matrix for testing
15: Ytest ← Y |ttest ≤ t < ttest + Ttest ▷ Find the output matrix for the testing
16: Train the Random Forest using Xtrain, Ytrain ▷ Training
17: Test the Random Forest using Xtest, Ytest ▷ Testing
18: Calculate Conditional Bias ▷ Use the values obtained

from the testing phase
19: ttrain ← ttrain + Ttest ▷ Update the beginning of

the training window
20: end while
21: end for
22: end procedure

D. Further Study of the Conditional Bias

This section explores the potential drivers of analysts’ conditional bias based on observations
of the model prediction. We first observe that the conditional bias tends to be lower for stocks
with a higher number of analyst coverages, suggesting a richer information environment
might lead to more accurate forecasts. Second, the conditional bias appears to be lower on
average for the period following the implementation of Regulation Fair Disclosure in October
2000, which prohibits companies from selectively disclosing non-public material information
to analysts Reuters (2024).

These observations motivate us to test the following hypotheses:
• The average level of the conditional bias decreases in a statistically meaningful way as
the richness of the information environment (measured through the number of analysts
covering a particular stock) increases.

• The average level of conditional bias has decreased in a statistically significant way
since the introduction of the Regulation on Fair Disclosure in October 2000.

To test these two hypotheses, we fit a linear regression to the values of conditional bias
obtained by running Algorithm 1. More specifically, the regression takes the form of the
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following equation:

Conditional Biast+τ
i,t = b0αi + b1βt + b2PRt + b3Analysts Numberi,t + ϵi,t (11)

In this equation, the variables b0, b1, b2, b3 represent constant coefficients to be determined.
αi and βt represent, respectively, the time-series average of the conditional bias of firm i
and the time-step average of the conditional bias of all firms at time t. Mathematically,
considering F firms and T measurements conducted at different times of the conditional
bias for each firm, the variables αi and βt may be calculated as follows:

αi =
1

T

T∑
t=1

Conditional Biast+τ
i,t (12)

βt =
1

F

F∑
i=1

Conditional Biast+τ
i,t (13)

The variable PRt is a dummy variable to study the effect the Fair Disclosure Regulation; this
variable is equal to 0 before the end of October 2000 and 1 afterwards. Finally, the variable
Analysts Numberi,t is a positive integer representing the number of analysts covering the
stock of firm i at time t.

With this regression, we are testing whether the variables representing the Fair Disclosure
Regulation and information richness (PR and Analysts Number) can be useful to explain
the conditional bias beyond the time-series and firm-specific averages. Thus, to test our
hypotheses, we are particularly interested in the values of the coefficients b2 and b3. If both
of these coefficients are negative and significant, it would provide evidence to support our
hypotheses. It is important to note that we have five separate datasets, one for each forecast
horizon considered. Therefore, we conduct the regression described by Equation 11 on the
data corresponding to each of these five horizons.
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IV. Exploratory Data Analysis

Building on the Methodology (Section III), this section presents the results obtained from
the analysis of the datasets we introduced earlier. We begin by presenting the results of our
study of the distribution of earnings in Section A; this study allows us to justify the need
to remove outliers from the dataset. Then, in Section B, we attempt to verify the similarity
of our dataset to the one of the original paper by comparing their sizes. This comparison
reveals that our dataset is smaller and we explain the reasons behind this difference in the
same section. Finally, in Section C, we study the relationship between some of the key
variables present in the dataset.

A. Distribution of the EPS Values

Our initial examination of the annual and quarterly EPS dataset revealed a significant num-
ber of entries with extreme values. For instance, there are 1,374 quarterly EPS values and
2,266 annual EPS values with an absolute value greater than 102. However, our practical
experience teaches us that the values of the EPS tend to be small (usually, in the order of
cents for quarterly EPS and in the order of dollars for annual EPS), something which clearly
does not align with this finding. Therefore, we decided to investigate further whether these
results correspond to some real data or whether they are a wrong entry in the database.

To verify the validity of these potential outliers, we manually compared some of these
entries to the EPS values reported on the financial statements available on the U.S. Securities
and Exchange Commission (SEC) EDGAR database. Some of these comparisons are shown
in Table 6. As it can be seen from this table, some of the EPS values with a large magnitude
reported on the I/B/E/S database are wrong. As a result of this finding, we conducted
some further research which revealed that the presence of erroneous entries in this database
is consistent with the literature on the topic. For example, Ljungqvist et al. (2009) found
that, across seven downloads from the I/B/E/S database occurring at an annual frequency
between 2000 and 2007, between 1.6% and 21.7% of the entries were different from one
download to the other, a result which raised our concerns regarding the validity of the data.
This finding was later reproduced by Call et al. (2021), who found a significant difference
between two downloads of the I/B/E/S data, with the first one downloaded in 2009, and
the second one in 2015. Finally, Acker & Duck (2009) compared 1,874 hand collected data
with the entries in the I/B/E/S database and found difference between the reporting dates
in 24% of the cases. These studies, together with the results shown in Table 6, led us to
believe that the large EPS values previously identified were probably erroneous and should
thus be considered as outliers.

Table 6: Comparison between of some of the quarterly EPS values obtained from the
I/B/E/S database and the corresponding ones obtained from the SEC EDGAR database.

Company Ticker
Fiscal Period
End Date

I/B/E/S
EPS Value

SEC EDGAR
EPS Value

Prospect Global PGRX 30/06/2013 -481 0.02
Intercloud systems GRYG 30/09/2014 -96 -0.81
Odonate Therapeutics ODT 30/09/2018 -1960 -0.98
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Although random forests are more robust to the presence of outliers than other machine
learning models (Hastie et al. 2009), our initial testing reveals that the magnitude of these
outliers is so large that the random forest model with the hyper-parameters specified in
the original paper is not capable of handling them, causing the model to be incapable of
predicting small EPS values. In the original paper, the authors do not specify how they
remove these outliers. Therefore, to circumvent the problem, we trim the dataset by removing
the 1% outliers. We plot the histograms of the trimmed quarterly and annual EPS values in
Figure 5.

One interesting feature which is immediately evident by studying Figure 5 is that the
earnings do not follow a symmetrical distribution. Rather, they are quite heavily skewed to
the right (in Figure 5, we plot in red a vertical line at EPS = 0 to better show this skew).
This skewness is consistent with the literature regarding the distribution of earnings. For
instance, Burgstahler & Dichev (1997) find a very similar distribution and explain it via
information-processing heuristics and prospect theory. These theories are beyond the scope
of this paper; nevertheless, it is reassuring to find this consistency between our observed
distribution of earnings and the literature.

(a) Quarterly EPS (b) Yearly EPS

Figure 5: Histograms of the EPS values obtained from the I/B/E/S database.

B. Size of the dataset

Next, we compare the size of our dataset to the one described in Van Binsbergen et al. (2023).
The results of this comparison are presented in Table 7. As it can be seen from this table,
the size of our dataset, for all the forecast horizons, is smaller than that of the original paper
by a percentage varying from 13.4% to 30.9%. Several factors could potentially explain this
discrepancy. First, we refer again to the work Ljungqvist et al. (2009) and Call et al. (2021),
who both found that the I/B/E/S dataset can vary depending on the download date. Then,
we cannot exclude the possibility that our merging process differed from the one used in
Van Binsbergen et al. (2023). The merging process employed in the original paper is not
fully described. Since merging can remove unpaired observations and reduce dataset size, a
slight difference in their merging procedure could explain the observed size variation. Finally,
although we believe that outliers were also removed from the set of target data points in
the original paper, their specific methodology for outlier removal remains unknown. This
difference in outlier handling could contribute to the size discrepancy.
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Table 7: Comparison between the size of our dataset and the size of the dataset used in
the original paper.

Forecast
Horizon

Number of data points
in our dataset

Number of data points
in the dataset of the

original paper
Difference

One quarter 885,765 1,022,661 -13.4%
Two quarters 811,899 1,110,689 -26.9%
Three quarters 748,251 1,018,958 -26.6%
One year 880,177 1,260,060 -30.1%
Two years 757,719 1,097,098 -30.9%

C. Analysis of the Key Variables

We now study the relationships between the key input variables for the random forest model
and the target variable (quarterly EPS values). We select these key input variables based on
those identified by Van Binsbergen et al. (2023) as having the highest feature importance.
More specifically, we focus on:

• Share price (price)
• Analysts’ average forecast (meanest)
• Most recent EPS value (adj past eps)
• Return on equity over the previous month (ret)

To understand these relationships, we employ a pair plot with univariate and bivariate
histograms (see Figure 6). This plot is generated using a random sample of 10,000 data
points (approximately 1% of the dataset) to ensure visualization clarity.

From the pair plot shown in Figure 6, it is clear that earnings and analysts’ predictions
show a strong linear relationship. Furthermore, there is a fairly strong correlation between
the most recent realisation of earnings and the future ones. This latter finding aligns with
the numerous studies detailing the good performance of random walk models to predict EPS
values, such as those by Gerakos & Gramacy (2013) and Monahan (2018). Consequently, we
expect analysts’ forecasts and the latest earnings realisations to hold significant importance
in our random forest model.
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Figure 6: Pair plot of the key features identified by looking at the feature importance
results of the original paper.
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V. Results

This section analyses the key findings of our work. We begin by presenting, in Section A,
the results obtained from the random forest prediction model previously introduced. This
section showcases the model’s performance metrics, allowing us to assess its effectiveness
in predicting future EPS values. In the same section, we compare our results with those
of the original paper, demonstrating the success of our model replication. Following this
performance evaluation, we explore the concept of conditional bias and its potential drivers.
In Section B, we present the results of our analysis of the conditional bias. This analysis
examines the relationship between factors such as information richness (measured by the
number of analysts covering a stock) and the introduction of the Regulation on Fair Dis-
closure, and their potential influence on analysts’ bias. Our analysis provides supporting
evidence that analyst bias diminishes as the information available about a company’s stock
becomes richer. Additionally, we observe a reduction in bias following the implementation
of Regulation Fair Disclosure (FD) by the SEC.

A. Replication of Original Paper’s Findings

This section examines the replication of the original paper’s key findings using the random
forest model. In Section A.1, we analyse the accuracy of our random forest model and the
term structure of the conditional bias. Then, in Section A.2, we compare the feature impor-
tance obtained from our analysis with the original paper’s findings. Finally, in Section A.3,
we analyze and compare the findings on conditional aggregate bias between our study and
the original paper. Lastly, in Section A.4 we discuss the key observations and demonstrate
that our model successfully replicates Van Binsbergen et al. (2023)’s findings with a high
degree of accuracy.

A.1. Model Performance and Term Structure of the Conditional Bias

To be able to make meaningful comparisons with the original paper’s model, we evaluate
the out-of-sample performance of our random forest model using the same metrics employed
by Van Binsbergen et al. (2023). Table 8 presents the values of these metrics for both our
model and the original model. This table facilitates a direct comparison by including both
sets of results.

Our results confirm the original paper’s finding that analysts tend to be overly optimistic,
especially for longer forecasts. As can be seen from Table 8, the average differences between
analysts’ forecasts and realised earnings (shown in columns labeled (AF − AE)) are all
positive and increase monotonically as the forecast horizon gets longer, ranging from 0.007
for the one-quarter horizon to 0.216 for the two-year horizon. Furthermore, Figure 7 shows
that our values follow a similar trend to the original paper, although they are systematically
lower. The observed differences, with an absolute value smaller than 0.1 for all horizons
except the two-year horizon, suggest a high similarity between our findings and those of the
original paper.
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Figure 7: Comparison of the values obtained for the term structure of the average difference
between analysts’ forecasts and realised earnings (we label this average difference (AF−AE)
following the notation used in the original paper).

Similar to the original paper, our results show that the time-series average difference
between the random forest model’s forecasts and realised earnings (columns labeled (RF −
AE) in Table 8) is close to zero across all forecast horizons. This indicates strong agreement
between our findings and the original paper. Furthermore, the magnitudes of these differences
are remarkably similar. The largest absolute value in our results is 0.011, while all others
are around 0.001. In the original paper, the largest value was 0.027, with all others similar
to ours (around 0.001).

Our results, as evidenced by the lower mean squared error (MSE) for the random forest
model compared to the analyst estimates displayed in columns (RF −AE)2 and (AF −AE)2

of Table 8, suggest that the model has the potential to outperform analysts in forecasting
accuracy. This finding highlights the model’s potential to outperform analysts in forecasting
accuracy.

However, we observe a fairly significant difference in the mean squared error for the two-
year forecast horizon. Our value deviates significantly (-0.777) from the value reported in
the original paper. We suspect this difference might be caused by a different outlier removal
methods compared to the one of Van Binsbergen et al. (2023). Since the squared error term
amplifies the influence of outliers, this variation could explain the observed discrepancy.

Lastly, considering the term structure of the conditional bias, the original authors find
that the average conditional bias is systematically positive and that it increases monoton-
ically with the forecast horizon (from 0.005 for one quarter to 0.021 for two years). They
also observe a moderate increase for shorter horizons (one to three quarters) compared to a
steeper rise for longer horizons (one and two years). Our findings (see Figure 8 and Table
8, columns labeled (RF − AF )/P ) mirror this trend. Similar to the original paper, the
average conditional bias in our results is consistently positive and exhibits a rising pattern.
Additionally, we find identical values (rounded to three decimal places) for the two-quarter
and three-quarter horizons. However, our conditional bias values are systematically lower
by an average of -0.006 compared to theirs.
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Figure 8: Comparison of the term structure of the conditional bias.

A.2. Feature Importance

After studying the metrics discussed in Section A.1, Van Binsbergen et al. (2023) examine
the importance of the various features used as inputs to the random forest models for the
one-quarter and one-year forecasts. In particular, they look at the decrease in impurity by
implementing the procedure described by Nembrini et al. (2018). However, in our analysis, we
employ a different approach, utilizing scikit-learn’s built-in function to calculate the decrease
in impurity. Furthermore, since the random forest is retrained monthly, the original paper
computes feature importance by averaging the importance values across all models. We
replicate this averaging approach in our analysis.

Our feature importance analysis, presented in Figure 9, reveals that we partially agree
with Van Binsbergen et al. (2023)’s findings. Similar to the original paper, analysts’ forecasts,
the most recent EPS, and the most recent share price are the top three most important
features for both forecast horizons (one-quarter and one-year).

However, we diverge in the importance of return on capital employed (ROCE) and return
on equity (ROE). Unlike the original paper, where these metrics ranked fourth or fifth for
both horizons, our results show them only reaching the top 10 for the one-year forecast
model. Finally, consistent with Van Binsbergen et al. (2023), all remaining features exhibit
low importance.
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(a) One-quarter forecast horizon. (b) One-year forecast horizon.

Figure 9: Histograms of the feature importance for the 10 most important features in the
one-quarter and one-year forecast horizon machine learning models.

A.3. Conditional Aggregate Bias

Finally, Van Binsbergen et al. (2023) also examine the conditional aggregate bias, which they
define as the average of the individual stocks’ conditional bias at each time-step. They first
study the conditional aggregate bias relative to the machine learning forecasts, and then the
conditional aggregate bias relative to the realised earnings. We repeat this analysis following
the same methodology; our results are presented in Figure 10 and 11.

Analysing these two figures, we observe that they look qualitatively very similar to the
ones presented in the original paper. For instance, Van Binsbergen et al. (2023) also find clear
spikes during the periods corresponding to the Internet bubble and the 2007-2008 financial
crisis. Furthermore, similarly our plots, the plots in the original paper also show that, on
average, at every time-step as the forecast horizon increases, the conditional aggregate bias
also increases. Also, similarly to their values, our values in both figures are almost always
positive. Finally, when comparing the heights of our peaks to the ones of the plots in the
original paper, we observe that our peaks are consistently lower by approximately 0.015.

Figure 10: Conditional aggregate bias relative to the machine learning forecasts.
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Figure 11: Conditional aggregate bias relative to the realised earnings.

A.4. Discussion of Replication Results

In this section, we discuss the results obtained from the replication of the original paper. In
particular, we present the notion that our results suggest that the findings of the original
paper can be replicated. We make this claim based on several observations.

First, we obtain performance metrics that are very similar to those calculated in the
original paper and follow similar trends. Although our values for these metrics are system-
atically lower than those shown in the original paper (this is particularly evident in the row
labelled Average difference of Table 8), the difference is almost always very small. The only
case where the difference is large is when we compare the mean squared error of the random
forest model. We believe that this difference is caused by the fact that we used a different
outlier removal algorithm from the original authors, as the paper does not specify which one
they used. The presence of these outliers is then most heavily seen in the mean squared
error of the model, due to the quadratic nature of these values.

Second, considering the results obtained from the feature importance analysis, we find
that the three most important features are the same ones with the highest importance in
the original authors’ models. We also find that other variables with high predictive power
in the original paper also have high importance in our models, although they are ranked in
a slightly different order from those shown in the original paper. We hypothesise that there
could be two main reasons for this difference. The first reasons is the already mentioned
fact that there is a possibility that we use a different outlier removal algorithm from the
original authors. The second reason is the fact that we measure feature importance with an
algorithm slightly different from the one used by the original authors.

Third, considering the plots of the conditional aggregate bias (both the one relative to
the machine learning algorithm as well as the one relative to the realized earnings, which
we show in Figure 10 and 11), we find that these plots look qualitatively very similar to
those presented in the original paper. Specifically, although our values are, similar to the
performance metrics presented in Table 8, slightly lower than those in the original paper,
we observe the same patterns, namely the presence of peaks at the same time steps and
a general decrease in the level of conditional bias after 2001. Consequently, based on all
these observations, we suggest that our replication of the original paper can be considered
successful.
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B. Novel Results on Analyst Bias

In this section, we firstly illustrate the observations which motivate our further analysis
on the bias. The first observation we make regards the time-series plot of the conditional
aggregate bias relative to the machine learning forecasts shown in Figure 10. Studying
this plot, one may observe that, before 2001, all the time-series appear incapable of falling
below an imaginary horizontal barrier, situated at roughly 0.0025. On the other hand, after
2001, this imaginary barrier appears to be closer to zero. Recalling that the Regulation on
Fair Disclosure came into effect in October 2000 Reuters (2024), this observation motivates
research into the effect of this new regulation on analysts’ conditional bias.

The second observation which we make is regarding the number of analysts covering
each stock. When plotting a graph of the average conditional bias as a function of the
number of analysts, we observe that, as the number of analysts increases, the average bias
tends to decrease. An example of such a plot is shown in Figure 12; as can be seen from
this plot, as the number of analysts covering a stock increases, the conditional bias initially
decreases rapidly, then approaches zero asymptotically. Although the values slightly change
depending on the forecast horizon, the shape of the plot remains consistent. Note that,
Figure 12 displays a single data point for each number of analysts, representing the average
conditional bias across all firms and all time periods.

To further explore this connection between the number of analysts and the conditional
bias, Figure 13 presents the average conditional bias of analysts’ earnings expectations rela-
tive to the machine learning forecast, grouped by the number of analysts (quartiles) for the
one-year horizon. Note that it shows the time series of the average conditional bias for each
quartile of analyst coverage.

As expected from Figure 12, Figure 13 visually confirms a systematic relationship. The
time series corresponding to the first quartile (fewest analysts) consistently exhibits the high-
est conditional bias, followed by the second, third, and fourth quartiles (increasing analyst
coverage), respectively. This finding reinforces the notion that a larger number of analyst
participating to the forecast tends to mitigate the overall conditional bias.

Figure 12: Conditional aggregate bias (relative to the machine learning forecasts) vs num-
ber of analysts for the one-year forecast horizon. The vertical grey lines indicates the quartiles
of the number of analysts.
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Figure 13: Average conditional bias of analysts’ earnings expectations relative to machine
learning forecast, grouped by number of analysts (quartiles) for the one-year forecast horizon.

B.1. Statistical Analysis of Results

Building upon the observations from the previous section, we investigate deeper to statis-
tically analyse the factors influencing conditional bias. Here, we employ our methodology
described in the Methodology section to assess the impact of various variables on the bias.

The results of our regression analyses, presented in Table 9 (one model for each forecast
horizon), reveal several key findings. Firstly, all estimated coefficients across the regressions
achieve statistical significance at the 5% level. This signifies a strong association between
the independent variables and conditional bias.

Second, the coefficients associated with the firm-specific effect (αi, representing the time-
series average conditional bias for each firm) are all positive and very close to 1. These
coefficients decrease slightly with longer forecast horizons. This suggests a strong positive
correlation between a firm’s historical conditional bias and its future conditional bias.

Third, the coefficients for the time-specific effect (βt, representing the average conditional
bias for all firms at a specific time) are also positive and exhibited a similar trend of decreasing
values with longer forecast horizons.

However, the most interesting results are those regarding the coefficients in front of the
PRt and Analysts Numberi,t terms (representing, respectively, the dummy variable for the
introduction of the Fair Disclosure Regulation and the number of analysts). We find these
coefficients to be small and negative for all time horizons. Furthermore, we observe that
both these coefficients become more negative as the forecast horizon increases.
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Table 9: Coefficients obtained from the linear regression on the conditional bias versus the
four explanatory variables identified in the previous section are reported below. Below each
coefficient, we report the corresponding t-statistic.

Forecast Horizon αi βt PRt Analysts Numberi,t

One-quarter 0.9977 0.6662 -0.0003 -0.0001
(889.35) (54.36) (-3.56) (-16.08)

Two-quarters 0.9958 0.6703 -0.0011 -0.0002
(527.91) (44.67) (-7.32) (-11.37)

Three-quarters 0.9977 0.6253 -0.0014 -0.0002
(718.48) (41.44) (-8.60) (-9.76)

One-year 0.9747 0.6141 -0.0020 -0.0006
(451.96) (79.88) (-8.60) (-32.41)

Two-years 0.9663 0.5272 -0.0033 -0.0007
(1002.02) (171.15) (-29.06) (-74.98)

B.2. Financial Interpretation of the Novel Results

Considering the impact of the Fair Disclosure Regulation, we find that, for all forecast
horizons, the conditional bias decreases after the introduction of this regulation. This finding
is supported by the fact that, for all forecast horizons, the coefficients in the studied regression
in front of the dummy variable PRt are negative and significant. To explain this finding,
we refer to the work of Lim (2001). In this paper, the author presents a model to describe
analysts’ tradeoff between better access to management information and forecast accuracy.
According to this model, analysts have to choose between making more optimistic forecasts,
which allow them to have better access to information (used to improve future forecast
accuracy), or making more pessimistic (but perhaps accurate) forecasts, which in turn would
lead to worse access to information and potentially more inaccurate forecasts in the future.

According to Lim (2001)’s model, supported by empirical evidence, it is rational for an-
alysts to exhibit a positive bias to gain better access to information. We believe that this
explanation can also be used to explain our findings. Specifically, before the introduction
of the Regulation on Fair Disclosure, companies could disclose material non-public informa-
tion, which could be used to significantly improve forecasting accuracy. However, after the
implementation of this regulation, companies can no longer distribute material non-public in-
formation to analysts, meaning that the potential improvement gained by issuing optimistic
forecasts has now been reduced. Thus, we suggest that the introduction of this regulation
reduced the rational incentives for analysts to make forecasts with a positive bias.

Considering the fact that the decrease in conditional bias after the introduction of the
Fair Disclosure Regulation was larger for longer forecast horizons, we believe this relates
to the time-compounding effect of changes in growth rates. In other words, if analysts
suddenly become less optimistic in their forecasts, decreasing the growth rates, the forecasts
with longer horizons will be more impacted than those with a short forecasting horizon.

Moving on to the study of the impact of the number of analysts on the conditional bias,
our results suggest that there is a negative and significant relationship between the number
of analysts covering a particular stock and the conditional bias. We interpret the number
of analysts as a proxy for the richness of the information set regarding a stock, as each
analyst contributes to this information set with their analysis. Therefore, we find that as the
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information set of a company’s stock expands, the conditional bias decreases. We believe that
this finding may be explained by the work of Das et al. (1998), who suggest that analysts’
bias tends to be more positive for companies with poor information sets. In such cases, the
marginal improvement in forecasting accuracy resulting from better access to companies’
non-public, immaterial information is more bigger. In other words, there is a higher demand
for non-public information in these companies. To access this information, analysts issue
more positive forecasts to please management, explaining the negative relationship between
conditional bias and the number of analysts. As for the observation that the conditional
bias is more strongly related to the number of analysts for longer forecast horizons, we
refer again to the same explanation used to describe the impact of regulation, namely, the
time-compounding effect of changes in growth rates.
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VI. Conclusions

This dissertation investigated the phenomenon of analyst bias in earnings forecasts and its
impact on equity valuations. Accurate earnings forecasts are crucial for efficient capital
allocation, yet analysts are known to exhibit a positive bias towards optimism.

Building upon the work of Van Binsbergen et al. (2023), we successfully replicated their
real-time measure of conditional bias, confirming its effectiveness in quantifying this bias.
Our results, largely aligning with the original paper, demonstrate that the measure is repli-
cable and analysts tend to overestimate future earnings.

Expanding upon our initial analysis, we explored the factors contributing to this bias.
Two key determinants emerged: the introduction of Regulation Fair Disclosure in 2000 and
the number of analysts following a particular stock. We link these findings to existing liter-
ature on the topic discussing bias. Our findings suggest that this regulation, by prohibiting
disclosure of material information, made analysts have less incentive to gain management
favor to access such information. Furthermore, we observed an inverse relationship between
the number of analysts and conditional bias. This observation may be used to suggest that,
as the number of analysts grows, the demand for non-public information decreases, mean-
ing that analysts are less incentivised to issue optimistic forecasts to gain better access to
management information.

These findings hold significant implications for corporate finance. The measure of condi-
tional bias allows for more accurate stock valuations, potentially leading to a more efficient
allocation of capital. Furthermore, our study highlights the importance of regulations such
as the Regulation Fair Disclosure in mitigating analyst bias. Finally, the negative associa-
tion between analyst coverage and bias underscores the vital role analysts play in fostering
market efficiency through their collective effort.
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