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Abstract 

This thesis investigates the behaviour of Q-learning algorithmic trading systems during 

periods of market shocks and heightened volatility. Utilizing a Markov process to model 

volatility changes, the study simulates trading scenarios to understand the responsiveness, 

stability, and impact of Q-learning-based strategies on market dynamics. The findings reveal 

that while Q-learning algorithms exhibit robust adaptability and can stabilize prices under 

normal conditions, they tend to exacerbate market instability during periods of extreme 

volatility. This dual role underscores the necessity for hybrid models that integrate Q-

learning with other strategies to enhance market resilience. 

The study also explores the influence of learning and exploration rates on the performance 

of Q-learning algorithms, highlighting the trade-offs between rapid adaptation and stability. 

Furthermore, the interaction between multiple Q-learning algorithms was found to amplify 

market reactions, particularly during volatile periods, leading to significant price 

fluctuations. 

These insights have important implications for both market participants and policymakers. 

The adaptability of Q-learning algorithms in stable markets suggests their potential for 

improving trading efficiency and liquidity provision. However, their destabilizing effects 

during market shocks call for the development of regulatory frameworks and safeguards to 

mitigate systemic risks. Future research should focus on creating hybrid models and 

exploring other reinforcement learning techniques to optimize trading strategies across 

varying market conditions. 
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Chapter 1: Introduction 

1.1 Background 

One of the most significant if not the most significant changes to market microstructure 

over the past two decades has been the introduction and proliferation of algorithms making 

trading decisions. Their growth can be attributed to the competitive advantages they lend to 

their users. Algorithms, when embedded into sophisticated trading systems can process 

data, interpret it then execute trades rapidly. Usage of mathematical models and high-

frequency strategies, algorithmic trading has proven to be lucrative. This growth has not 

come without fault, it is also purported to be the cause of greater market volatility, 

especially during periods of market stress. Brogaard, Hendershott, and Riordan (2014) 

demonstrate how high-frequency algorithmic trading has contributed to increased volatility 

during market shocks. The way in which algorithmic traders respond to market stressors or 

shocks remains a key issue to be studied.  

The first instances of algorithmic trading were seen towards the end of the 20th century as 

traditional floor or ‘pit’ trading, was beginning to be replaced by electronic trading. The 

transition to electronic exchanges set the stage for a new era, reinventing the way we 

interact with markets. This paved the way for the development of sophisticated algorithmic 

trading strategies. High frequency traders (HFTs) emerged in the early 2000s and were 

significant drivers of new regulation. A notable example includes the creation and 

implementation of the Markets in Financial Instruments Directive (MiFID) in Europe, which 

aimed to foster competitive and transparent markets. 

The rapid improvements in computing power, network speed and connectivity, data 

productivity and various other technological leaps forward have provided fertile grounds 

upon which algorithmic trading has flourished these past two decades. There has also been 

a significant inflow of intellectual capital towards quantitative and algorithmic trading 

strategies. We have seen in more recent years the remarkable growth of machine learning 

techniques in this field. Reinforcement learning techniques such as Q-learning algorithms 

have helped make further advancements in trading algorithm sophistication. 

It is likely that the advent of algorithmic trading has been a net positive when it comes to 

market efficiency. The frequency, speed and scale at which algorithms can execute in theory 

should lead to tighter prices, greater provisioning of liquidity and rapid price discovery, all 

features of efficient markets. This has been demonstrated by Hendershott, Jones, and 

Menkveld (2011), who’s research showed that algorithmic trading improves liquidity across 

various markets globally. 

We have also seen algorithms pose challenges and threats to the smooth running of 

markets. Not only are the increases in volatility of concern, but we have also seen flash 

crashes and instances of market manipulation. Kirilenko et al. (2017), investigated the May 

2010 ‘Flash Crash’. Their study highlighted how algorithmic traders can exacerbate market 



instability. Whilst in stable markets, liquidity conditions have been improved by HFT, 

during this event they were the cause of an extreme crash due to a sudden withdrawal of 

liquidity. 

As previously mentioned, algorithmic trading was a key driver of new regulation over the 

last 25 years. In Europe we have seen MiFID II and in the United States, the Dodd Frank Act. 

Both regulations aim to improve transparency, ensure the resilience of trading systems and 

prevent abusive market behaviour. Both regulations seek to strike a balance between the 

benefits given and the risks presented as a result of the existence of algorithmic trading 

strategies.  

It is imperative that we understand the behaviour of algorithms during market shocks or 

periods of elevated volatility to best ensure that risks are managed appropriately, and 

market disruptions are avoided. This study focuses on the behaviour of Q-learning-based 

trading systems during market shocks, providing insights into their stability, performance, 

and impact on market volatility. 

1.2 Research Problem 

The primary question addressed in this thesis is how algorithmic trading systems, 

particularly those using Q-learning algorithms, behave during market shocks. Market 

shocks, often defined by sharp one-time price adjustments, can significantly alter the 

trading landscape and cause large and sustained increases in volatility. It is crucial to assess 

the stability and efficacy of these algorithms in such situations to prevent adding to market 

instability or causing unintended consequences. 

The research problem encompasses several specific issues. Market shocks can occur due to 

various reasons such as economic news, geopolitical events, natural disasters, or 

unexpected shifts in market sentiment. Each type of shock may uniquely impact market 

dynamics, requiring Q-learning algorithms to adjust differently to these shocks. Q-learning 

algorithms consistently learn from past data and continuously update existing strategies 

based on real-time price streams. During market shocks, when changes are fast and 

unpredictable, these learning processes are challenged, sometimes leading to suboptimal 

decisions. The relevance of the 'learning rate'—how much importance is given to recent 

data compared to older data—becomes particularly significant in these moments. 

Furthermore, Q-learning algorithms operate within a trading environment that includes 

various other strategies, leading to complex dynamics. These interactions can increase the 

market's sensitivity to shocks, as feedback loops may amplify fluctuations. 

Addressing this research problem is significant for several reasons. By examining the 

performance and stability of Q-learning algorithms in response to market shocks, this thesis 

aims to contribute to a more stable financial market. Insights from this research might help 

design trading algorithms that are more robust to unexpected and severe shocks, leading to 

the development of more adaptive algorithms that maintain optimal performance even 



under high market volatility. Additionally, the findings can assist regulators in developing 

policies to ensure the responsible use of algorithmic trading systems. This includes 

guidelines for algorithmic behaviour in response to market stressors and rules to prevent 

events like the 'Flash Crash.' 

1.3 Objectives of the Study 

The objectives of this study are threefold. Firstly, to investigate the responsiveness of Q-

learning algorithms to market shocks, assessing how quickly and effectively they can adapt 

to sudden changes in market conditions such as fixed-time volatility changes and stochastic 

regime shifts modelled using Markov processes. Secondly, to evaluate the stability of 

algorithmic trading during periods of high volatility, determining whether these algorithms 

contribute to or mitigate market instability. Thirdly, to analyse the impact of algorithmic 

trading on market volatility during shocks, exploring the potential feedback loops and 

systemic risks introduced by algorithmic trading strategies, particularly how the 

interactions between multiple Q-learning algorithms can amplify market reactions.   

Additionally, this study aims to investigate the liquidity provision and withdrawal 

behaviour of Q-learning algorithms during extreme volatility events and to evaluate the 

compliance of Q-learning algorithms with existing market regulations during periods of 

high volatility. 

Our methodology builds upon the foundational work by Colliard et al. (2023), who critically 

examined Q-learning algorithm market-makers in the context of pricing and liquidity under 

adverse selection. While Colliard et al. primarily focused on static adverse selection costs 

and their impact on pricing, our study diverges by introducing dynamic volatility regimes to 

model market shocks more realistically. Specifically, we incorporate both fixed-time and 

stochastic regime changes to simulate the unpredictable nature of market volatility. This 

extension allows us to explore how Q-learning algorithms adapt their strategies not just 

under adverse selection, but also in the face of abrupt and significant market fluctuations. 

Our scientific contribution lies in this nuanced examination of algorithmic behaviour, 

providing deeper insights into the stability and performance of Q-learning algorithms under 

varying volatility conditions, thus filling a critical gap in the literature. 

1.4 Research Questions 

The research seeks to answer the following key questions: 

1. How do Q-learning algorithms adjust their trading strategies in response to market 

shocks? 

 

2. What is the performance of Q-learning-based trading algorithms under different 

volatility conditions?  

 



3. How do these algorithms influence overall market stability during shocks?  

The answers to the research questions are as follows: 

1. Q-learning algorithms adapt their trading strategies by adjusting to sudden changes 

in market conditions through a process of learning and exploration. These 

algorithms continuously update their strategies based on new information. During 

market shocks, characterized by sharp and unpredictable changes, the algorithms 

rely heavily on their learning rate (alpha) and exploration rate (epsilon) to 

determine their responses. High learning rates allow for quick adaptation but can 

also lead to instability, while lower learning rates provide more stability but slower 

adaptation. The exploration rate helps the algorithm to discover optimal strategies 

but can result in erratic behaviour if too high during shocks. The interaction 

between multiple Q-learning algorithms in the market can amplify these effects, 

leading to significant price fluctuations and potential market instability. 

 

2. The performance of Q-learning-based trading algorithms under different volatility 

conditions is evaluated using a metric called realized spreads. The study found that 

higher learning rates lead to quicker adaptation and more competitive pricing in 

volatile environments. However, this rapid adaptation can also result in increased 

market instability immediately following volatility shifts. Fixed-time regime changes 

showed pronounced price hikes and quick convergence to equilibrium, highlighting 

the dynamic nature of algorithmic pricing in response to regime shifts. In stochastic 

volatility scenarios, the algorithms exhibited more gradual adaptation with faster 

convergence at higher alpha levels. The realized spreads, which measure the 

difference between the price and the realized value of the asset, also varied with the 

learning rate, indicating that higher learning rates can enhance the ability to 

capitalize on regime changes. 

 

3. The algorithms influence overall market stability during shocks by initially causing 

price volatility but eventually enhancing market stability. In the presence of 

stochastic regime shifts, the algorithms exhibit a gradual adaptation process, 

initially resulting in dips in prices but converging faster at higher alpha levels. This 

gradual adjustment helps in mitigating the initial shock impact over time. During 

fixed-time regime changes, the algorithms respond with pronounced price hikes 

followed by rapid convergence, reflecting their dynamic response to new 

information. Although this immediate reaction can temporarily destabilize the 

market, higher alpha levels enable quicker adaptations and shorten periods of 

elevated prices, thus enhancing stability. Furthermore, the algorithms' 

competitiveness in the face of higher adverse selection moderates their price 

adjustments compared to purely competitive markets, resulting in less pronounced 

price jumps and contributing to overall market stability 



These findings suggest that while Q-learning algorithms have the potential to improve 

trading efficiency and liquidity, their implementation must be carefully managed to avoid 

unintended consequences during periods of high market volatility. Future research and 

regulatory frameworks should focus on developing hybrid models and safeguards to 

mitigate systemic risks. 

1.5 Structure of the Thesis 

This thesis is structured as follows: 

• Chapter 1 provides an introduction and outlines the research problem, objectives, 

and questions. 

• Chapter 2 reviews relevant literature on Q-learning algorithms, market shocks, and 

their interplay in financial markets. 

• Chapter 3 details the methodology, including data collection, model implementation, 

and experiment setup. 

• Chapter 4 presents and discusses the results of the experiments. 

• Chapter 5 concludes with a summary of findings, contributions to knowledge, and 

recommendations for future research.  



Chapter 2: Literature Review 

2.1 Overview of Q-Learning Algorithms 

Q-learning algorithms are a type of reinforcement learning algorithm that learns to 

maximise cumulative rewards in a stochastic environment. Explorative options and learning 

from realised payoffs form the basis of Q-learning algorithms improvement mechanism. 

Regular updating of expected utilities of a given action int that state, denoted as ‘Q-values’, 

allow the algorithm to improve iteratively. In the context of financial markets, Q-learning 

algorithms can be used to build trading algorithms that adapt to market conditions and 

optimise trading decisions.  

2.2 Previous Studies on Q-Learning in Financial Markets 

The study by Calvano et al. (2019) sheds light on the functionality of AI-based pricing 

algorithms within oligopoly markets. Within a repeated game framework, their study 

utilizes Q-learning algorithms to examine whether these algorithms can independently 

learn to collude without direct communication. They discovered that even simple 

algorithms have a propensity to form collusive plans and uphold high prices. Typically, this 

collusion was observed as reward and punishment cycles, both typical collusive 

mechanisms. This outcome is consistent across diverse market conditions, including cost 

asymmetries and demand variations. 

These findings are supportive of our research question by demonstrating the tendency of 

algorithms to collude in volatile markets and their rapid cohesive adjustments can 

exacerbate crashes. This entirely aligned with the findings of Kirilenko et al. (2017) in their 

study of the May 6th Flash Crash. Their analysis indicated that it was the actions of high 

frequency trading algorithms that contributed to a further intensification of the crash. 

These algorithms, typically providing liquidity, rapidly withdrew from the market leading to 

a ‘liquidity vacuum’. 

Hendershott et al. (2011) explored further this dual role of algorithmic trading by studying 

how market liquidity is affected in a variety of international markets. They found that, 

algorithmic trading often lowers transaction costs and increases liquidity in markets with 

stable market conditions, however these improvements are not as noticeable in less liquid 

markets. Algorithmic liquidity may be unreliable during market shocks, especially in 

markets where liquidity is already sparse. Understanding the overall effects of algorithmic 

trading during times of high volatility requires an understanding of this context-

dependency. 

This discussion is expanded upon by Brogaard et al. (2014), who specifically addressed the 

behaviour of algorithmic trading in volatile markets. Once again, their findings were 

consistent, algorithmic traders — who are usually liquidity providers — tend to pull 

liquidity out from the market during periods of elevated volatility. 



Colliard et al. (2023) offer a critical examination of Q-learning algorithm market-makers to 

determine pricing in the face of adverse selection. Their analysis found that Q-learning 

algorithms typically impose a mark-up even if adverse selection is dealt with effectively. 

Contrary to what the Nash equilibrium would have predicted, this markup in prices 

increases as adverse selection costs decrease. This behaviour implies that Q-learning 

algorithms' learning capacity can be limited in the presence of higher profit variance, which 

could result in less competitive pricing in volatile markets. 

In addition to these findings, research on the modelling of market shocks with stochastic 

processes by Cont and Kokholm (2014) highlights the significance of understanding the 

impacts of volatility on algorithmic trading strategies. Their findings included that Q-

learning algorithms' predictability may be seriously compromised during times of extreme 

volatility, which could result in poor trading decisions and greater market instability. 

Biais et al. (2015) examined high-frequency trading's effects on volatility, pricing efficiency, 

and market liquidity. Their study demonstrated that while HFTs can contribute to the 

improvement in market conditions, they also have the potential to destabilize markets 

under certain circumstances. This dual nature has been alluded to previously and is 

important for understanding the broader implications of algorithmic trading. 

Baldauf and Mollner (2020) examined the efficiency gains from high-frequency trading and 

the associated risks during periods of market turbulence. This study is closely related and 

complements the work of Kirilenko et al. (2017) and offers a more comprehensive insight 

into the circumstances in which trading algorithms might remove liquidity and exacerbate 

market shocks. 

Cont and Mancini (2011) studied how changes in liquidity impact market stability, paying 

particular attention to how trading strategies’ role in the provision and withdrawal of 

liquidity. Whilst a highly theoretical piece of literature, their approach is useful in 

understanding how algorithmic trading affects liquidity dynamics. 

Cartea et al. (2022) provide an extensive overview of algorithmic and high-frequency 

trading, discussing strategies, risks, and regulatory challenges. Their work frames the 

discussion on the broader implications of algorithmic trading and the specific challenges 

posed by Q-learning algorithms during market shocks. 

The effects of AI-powered trading on algorithmic collusion and price efficiency are studied 

by Dou, Goldstein, and Ji (2023). Their research found that even in the absence of explicit 

communication between trading algorithms, AI algorithms may inadvertently collude by 

adopting tactics that result in ‘supra-competitive pricing’. This happens through a process 

called "collusion by mistake," in which algorithms independently assume pricing techniques 

that lead to prices that are higher than those that would be anticipated in a perfect market 

under the assumption of perfect competition. This result shows how AI-driven trading has 

the potential to undermine market efficiency by setting non-competitive prices, especially 



in markets with significant information asymmetry. This work by Dou et al. complements 

previous research by Calvano et al. (2020), which highlighted how dynamic collusive 

strategies might be learned by Q-learning algorithms in a repeated Bertrand game situation. 

Furthermore, Dou et al. (2023) emphasise the significance of considering AI's wider effects 

in the financial markets, particularly with respect to regulatory efforts aimed at managing 

the potential risks associated with algorithmic trading strategies that are collusive. 

According to their analysis, the existing models in the hands of regulators, may be 

underestimating the complexity and scope of impact of AI-driven trading methods on 

markets. 

Considering these studies cohesively, we find a recurring theme: algorithmic trading 

presents efficiency improvements and liquidity in stable markets but risks of destabilizing 

behaviour during market shocks are also present. Q-learning algorithms’ tendency to 

display collusive behaviour as shown by Calvano et al. (2019) and Dou et al. (2023), coupled 

with the withdrawal behaviour shown in studies by Kirilenko et al. (2017) and Brogaard et 

al. (2014), demonstrate a complex relationship between algorithms and markets generally. 

Hendershott et al. (2011) showed that algorithms’ effects are context dependent. This 

implies that our analysis should take various market circumstances into consideration 

when evaluating how Q-learning algorithms behave under market shocks 

2.3 Gaps in the Literature 

Much progress remains to be seen in the body of knowledge regarding algorithmic trading 

and its effects on financial markets, even after significant research. One notable gap is the 

limited understanding of Q-learning algorithms’ behaviour during market shocks. 

Algorithmic trading behaviours, such as the withdrawal of liquidity or collusive tactics have 

been explored generally by a few of the studies previously mentioned, such as those 

conducted by Calvano et al. (2019) and Brogaard et al. (2014), however there still lacks an 

in-depth analysis of the mechanisms and decision-making processes of Q-learning 

algorithms under alternative volatility regimes and shocks. As demonstrated by Kirilenko et 

al. (2017), a large part of the existing research has concentrated on high-frequency trading 

and its acute effects on volatility and liquidity dynamics. Comprehensive research that 

considers machine learning methods like Q-learning algorithms within trading models and 

that simulates diverse market conditions, is lacking, particularly those that attempt to 

replicate the stochastic nature of volatility in financial markets. 

Another important gap in the literature is highlighted by Colliard et al. (2023), namely Q-

learning algorithms’ tendency to deviate from competitive pricing, most notably when 

exposed to adverse selection costs. This finding shows a clear need for further investigation. 

Hendershott et al. (2011)'s observations regarding the context-dependent effects of 

algorithmic trading highlights a need for more thorough research across a range of asset 

classes and market conditions. This gap emphasises that future research on algorithmic 



trading behaviour ought to be studied using sophisticated machine learning frameworks, 

considering a broad array of liquidity and volatility dynamics. 

Finally, research into the potential regulatory response to algorithmic trading is necessary. 

Colliard et al. (2023), Calvano et al. (2019), and Dou et al. (2023)’s papers all highlight the 

importance that regulators are aware of the dangers of collusive trading behaviour and the 

market instability algorithms may cause. There is a clear need for further examination into 

the dual nature of algorithmic trading, so that markets may enjoy the benefits of enhanced 

liquidity in stable conditions, whilst regulatory frameworks mitigate the exacerbated 

volatility effects. 

  



Chapter 3: Methodology 

3.1 Research Design 

This study employs a simulation-based approach to investigate the behaviour of Q-learning 

trading algorithms under different market volatility conditions. By creating controlled 

environments that mimic real market scenarios, we systematically analyse the algorithms' 

performance and stability during market shocks. The experiments are designed to 

understand how these algorithms adapt to sudden changes in market volatility and how 

they influence overall market stability. 

3.2 Model Implementation 

The paper from Colliard et al. (2023) offers the following model implementation: 

A client, possessing private information about her valuation of the asset, approaches the 

two AMs simultaneously to request price quotes. The private valuation of the client is 

comprised of a random binomial value (vH or vL), plus a liquidity shock L which is random 

and normally distributed with mean 0 and standard deviation . The AMs, using Q-learning 

algorithms, independently determine and post a price at which they are willing to sell the 

asset. The prices quoted by the AMs are based on their learned strategies, which are 

influenced by previous interactions and the outcomes of past trades. 

Once both AMs have posted their prices, the client compares the quotes. The purchase 

decision follows a simple rule: the client will buy the asset from the AM offering the lowest 

price, provided this price is less than or equal to the client's private valuation of the asset. 

This mechanism introduces a competitive element into the market, as each AM aims to offer 

a price low enough to win the trade while still covering the risk and potential adverse 

selection costs associated with selling the asset. 

If the lowest quoted price (the minimum ask price) is below the client's valuation, the trade 

occurs at this price. The AM with the lowest quote wins the transaction and sells the asset to 

the client. If both AMs offer the same price, the client may split the purchase equally 

between them, though the specifics of such a tie are dependent on the exact implementation 

of the Q-learning algorithm in the simulation. If neither AM's price meets the client's 

valuation threshold, no trade takes place. 

For each AM, we use a Q-Matrix, which is essentially a matrix of two columns of numbers. In 

the first column exists all the possible prices that the AM can choose from. In the second 

column lies the estimated profit for each specific price. To begin with, we fill this column 

with random values following a uniform distribution between 3 and 6 for each AM and 

price, ensuring that the initial estimates are different and randomly distributed across all 

prices and AMs. 



After each episode, the AMs update their Q-Matrices by weighting  times the new recent 

payoff obtained by posting a determined price, and 1- times the previous payoff obtained 

from that price. This process allows us to implement a learning rate  in order to set the 

speed at which the Q-Values are updated. 

The exploration rate, , is the probability at which the AMs post a random price to “explore” 

the market. At the beginning, this is set to be high, allowing the algorithms to explore 

significantly. After a while, this probability decays exponentially, setting the stage for 

exploitation of the information learnt in the previous rounds. 

Our research adds an ingredient of uncertainty: volatility regime changes. Utilising a 

Markov process, these changes can be expressed in two ways: a fixed-time volatility regime 

change and a stochastic volatility regime change. In both experiments, the volatility of the 

asset is represented by different states: 0 (lower volatility) and 1 (higher volatility). The 

transitions between these states are central to understanding the algorithm's behaviour. 

Below is an explanation on how the two different setups work: 

1. Stochastic Regime Change: 

o The volatility changes follow a probabilistic process with a transition 

probability of 1 over 25,000 episodes. 

o This approach introduces randomness into the volatility changes, reflecting 

more realistic market conditions where volatility shifts can occur 

unpredictably. 

2. Fixed-Time Regime Change: 

o In this experiment, the volatility of the asset changes deterministically after 

every 25,000 episodes. 

o This approach simulates a deterministic regime change, allowing us to 

observe the algorithm's behaviour in detail after each volatility shift. 

3.3 Experiment Setup 

In the experimental setup for simulating the behaviour of Algorithmic Market Makers (AMs) 

utilizing Q-learning algorithms, several key parameters are defined to structure the 

environment and guide the algorithms' learning processes. Following is a list and 

explanation of the constant parameters across all the simulations: 

• Markov State: 0 indicates the state of low volatility, while 1 is the state of high 

volatility. The starting state is 0 for all simulations. 

• vH (v High): This parameter represents the high payoff value of the asset. For the 

purpose of this experiment, vH is assigned a value of 4 in state 0, and of 6 in state 1. 



• vL (v Low): This parameter represents the low payoff value of the asset, with vL set 

to 0 in state 0 and -2 in state 1. 

• Δv (Delta v): This parameter represents the volatility of the asset payoff, defined as 

the difference between the high and low payoff values (vH - vL). In this experiment, 

Δv is set to 4 in state 0, and 8 in state 1. 

• µ (Mu): Mu signifies the probability that the asset payoff is vH (high). In this 

experimental configuration, µ is set to 0.5, indicating an equal likelihood of the asset 

payoff being either high or low. 

• σ (Sigma): Sigma denotes the dispersion of clients' liquidity shocks, which reflects 

the variability in the private valuations of clients for the asset. Without this 

variability, no trade would be possible. In this experimental setup, σ is set to 5. 

• N: This parameter specifies the number of Algorithmic Market Makers participating 

in the market. For this experiment, N is set to 2, indicating the presence of two 

competing AMs. 

• Price Grid: The AMs can select prices from a predetermined grid, ranging from 1.1 

to 14.9, with a tick size of 0.1. This setup allows for 139 discrete pricing options for 

the AMs. 

• Q-matrix: The Q-matrices are initialized with random values uniformly distributed 

between 3 and 6, ensuring that the initial estimates of profits are bounded within 

this range, thereby facilitating the initial exploration phase of the Q-learning 

algorithm. 

• T: This parameter represents the number of episodes in each experiment. Each 

experiment consists of 200,000 episodes, providing ample opportunity for the Q-

learning algorithms to iteratively learn and adapt their pricing strategies. 

• K: This parameter denotes the number of experiments conducted for each set of 

parameters. In this study, K is set to 1,000, ensuring that the results are statistically 

robust and representative of the underlying stochastic processes. 

These two parameters change to create different environments for the AMs to behave: 

•  (Epsilon): Epsilon is the exploration probability over time. In some simulations it 

is set to decay at a speed of e^(8.10^-5*episode), meaning that the likelihood of 

exploration decreases gradually as the number of episodes increases, thereby 

allowing the AMs to transition from exploration to exploitation as they accumulate 

experience. In other simulations it is constant at 0.1, to allow for a frequent 

exploration and learning opportunity during volatility shocks even at later episodes. 

• α (Alpha): Alpha is called the learning rate and determines the sensitivity of the 

AMs' estimates to new observations. It is set to three different levels of 0.01, 0.1 and 

0.5, varying the weight at which each new observation counts in updating the Q-

values, changing stability and the speed of adaptation in the learning process. 

These parameters collectively define the experimental environment and the learning 

dynamics of the Q-learning algorithms. By systematically adjusting these last two 



parameters, the study aims to simulate and analyse the long-term pricing strategies of AMs, 

comparing them to theoretical benchmarks provided by the Colliard et al. (2023) paper. 

This detailed parameterization ensures that the experimental outcomes are both rigorous 

and replicable, contributing valuable insights to the understanding of algorithmic pricing in 

financial markets. 

3.4 Evaluation Metrics 

The performance of the Q-learning algorithms is evaluated using several key metrics to 

provide a comprehensive understanding of their effectiveness and stability under different 

market conditions. These metrics include the evolution of the average greedy price per 

episode, which tracks the price selected by the algorithm's greedy policy over time, 

reflecting its decision-making process and adaptation to changing volatility. Additionally, 

the average reward per episode is measured to assess the overall profitability and efficiency 

of the trading strategies, indicating how well the algorithm is learning and optimizing its 

actions. Lastly, the average realized spread per episode, defined as the difference between 

the price and the realized value of the asset, is calculated. This metric provides insight into 

the algorithm's ability to capitalize on market conditions by comparing the executed prices 

against the asset's value, thus highlighting the effectiveness of the trading strategies in 

generating profitable spreads. By analysing these metrics, we can draw conclusions about 

the robustness, adaptability, and overall performance of the Q-learning algorithms in both 

fixed-time and stochastic volatility environments.  



Chapter 4: Results and Discussion 

4.1 Introduction 

In this chapter, we present and discuss the results obtained from our simulations, focusing 

on the impact of stochastic regime shifts in algorithmic pricing and liquidity in securities 

markets. This analysis will be compared to the findings of Colliard, J.-E., Foucault, T., & Lovo, 

S. (2023) in their paper "Algorithmic Pricing and Liquidity in Securities Markets" to gain a 

better understanding on how Algorithmic Market Makers behave under changes in volatility 

of the asset prices. 

4.2 Simulation 1: Stochastic Regime Changes 

While the environment settings are identical to the paper — featuring an alpha of 1%, 

exponentially decaying epsilon, and other consistent parameters — the key difference lies 

in the introduction of stochastic regime changes in our simulations. 

When comparing our results with those of Colliard et al. (2023), a notable difference 

emerges in the behaviour of the greedy price. In our simulations with stochastic regime 

shifts, the greedy price initially dips to a lower level of approximately 6.5 before eventually 

converging around 7. In contrast, the study by Colliard et al. (2023) shows the price directly 

converging to a lower level of 5. This suggests that the algorithms in our setup take some 

time to adapt to volatility changes, ultimately determining that a level of 5 may not be 

competitively sustainable. 

 

Parameters: 

Experiment Stochastic Changes 
Epsilon Exponentially Decreasing 
Alpha 1% 



 

Exploring higher levels of alpha, specifically 10% and 50%, we observe a more rapid 

convergence of the greedy price, settling around 6. This indicates that the algorithms are 

better equipped to adapt to increased volatility, learning to maintain competitive pricing 

more efficiently. The ability to quickly adapt and find a lower equilibrium price in higher 

alpha scenarios highlights the algorithms' enhanced competitiveness and agility in volatile 

environments. 

 

Parameters: 

Experiment Stochastic Changes 
Epsilon Exponentially Decreasing 
Alpha 10% 

 



Parameters: 

Experiment Stochastic Changes 
Epsilon Exponentially Decreasing 
Alpha 50% 

 

 

The realized spreads also exhibit notable behaviour, converging faster to an equilibrium 

level of approximately 0.5 as the level of alpha increases. This suggests that higher alpha 

levels facilitate quicker adjustments to equilibrium, enhancing market efficiency and 

stability. 

 

Parameters: 

Experiment Stochastic Changes 
Epsilon Exponentially Decreasing 
Alpha 1% 

 



 

Parameters: 

Experiment Stochastic Changes 
Epsilon Exponentially Decreasing 
Alpha 50% 

When epsilon is kept constant at 0.1, the greedy prices converge to a lower level: 6 for alpha 

= 1% and 5.5 for the higher alpha cases. This implies that a fixed experimentation rate limits 

the algorithms' ability to exploit the environment once they have learned its dynamics, 

ultimately reducing their realised spreads. 

 

Parameters: 

Experiment Stochastic Changes 
Epsilon Constant 
Alpha 1% 

 



 

Parameters: 

Experiment Stochastic Changes 
Epsilon Constant 
Alpha 50% 

4.3 Simulation 2: Fixed-Time Regime Changes 

The introduction of fixed-time regime changes offers a clearer and more precise 

understanding of algorithmic behaviour during each regime change. At a fixed epsilon, the 

greedy prices consistently converge to the same levels as observed previously. However, we 

notice a pronounced hike of almost 1 at each regime change. With increasing alpha, this hike 

becomes more pronounced, and the convergence to equilibrium post-regime change occurs 

more swiftly. 

 



Parameters: 

Experiment Fixed-Time Changes 
Epsilon Constant 
Alpha 1% 

 

Parameters: 

Experiment Fixed-Time Changes 
Epsilon Constant 
Alpha 50% 

 

This hike in price after a regime change lasts around 200 episodes for alpha = 1%, 

indicating that the algorithms suffer from a feedback loop where each one influences the 

price of another, resulting in a higher posted price. This rapid draining of market liquidity 

seems to underscore the dual nature of algorithms to both increase and withdraw liquidity 

from the markets, especially during periods when liquidity is critically needed. However, 

the higher the alpha, the shorter this period lasts, suggesting that algorithms with higher 

alpha values adapt more quickly to new regimes, mitigating the duration of increased prices 

and restoring equilibrium faster. 

In scenarios with exponentially decreasing epsilon, the algorithm completes its learning 

phase at the end of the period. As the experimentation rate nears zero, the price movements 

after each regime change become very narrow. The higher the learning rate, the quicker this 

stabilization process, although with minimal differences between alpha levels of 10% and 

50%. Additionally, higher learning rates correlate with reduced price volatility. An 

intriguing aspect of this setup is the increase in realized spreads following each regime 

change, allowing the algorithms to capitalize on the volatility. This effect is more 

pronounced with higher alpha levels, indicating that increased learning rates can enhance 

the algorithms' ability to benefit from regime changes. 



 

Parameters: 

Experiment Fixed-Time Changes 
Epsilon Exponentially decreasing 
Alpha 1% 

 

 

Parameters: 

Experiment Fixed-Time Changes 
Epsilon Exponentially decreasing 
Alpha 50% 

 



4.4 Discussion of Results 

The results from our simulations highlight several key points regarding the impact of 

stochastic and fixed-time regime changes on algorithmic pricing and liquidity. The 

introduction of stochastic regime shifts led to a more gradual adaptation process for the 

algorithms, with initial dips in greedy prices and faster convergence at higher alpha levels. 

In fixed-time regime changes, the pronounced hikes in prices and the subsequent rapid 

convergence underscore the dynamic nature of algorithmic pricing in response to regime 

shifts. Higher alpha levels facilitated quicker adaptations and shorter periods of elevated 

prices, enhancing market stability. 

A hasty conclusion might be that algorithms exacerbate volatility by increasing prices 

immediately after regime changes. This behaviour suggests that while algorithms can 

enhance market efficiency over time, their initial response to shocks can lead to increased 

volatility. The rapid price hikes following regime changes suggest that algorithms tend to 

react strongly to new information, which can temporarily destabilize the market. 

However, this argument can be easily challenged by looking at how the algorithms would 

behave in the Glosten-Milgrom benchmark. In fact, this benchmark suggests that when the 

volatility of the underlying asset is 4 (v = 4), the competitive price should be 2.68, and 

when the volatility is 8 (v = 8), the competitive price should be 5.02. 

Consequently, in a scenario with competitive market-makers aware of volatility jumps, we 

would expect the prices to increase by 2.34 with each volatility rise and decrease by the 

same amount with each volatility drop. Our findings indicate that algorithmic trading 

results in less pronounced price jumps. The paper written by Colliard et al. (2023) offers an 

explanation: higher adverse selection prompts algorithms to become more competitive, 

thereby moderating their upward price adjustments compared to a purely competitive 

market scenario. 

However, when the market experiences a sudden drop in volatility, one might expect a 

corresponding decrease in the prices set by these trading algorithms. Instead, our 

observations indicate that the algorithms react with a price hike, rather than a reduction. 

This counterintuitive response can be attributed to the algorithms' adaptive learning 

processes, which, during periods of high volatility, condition them to anticipate and react to 

rapid market changes aggressively. As a result, when volatility suddenly decreases, the 

algorithms' pre-conditioned responses can lead to overcompensation, driving prices up 

instead of down. 

This behaviour is particularly concerning because it suggests that algorithmic trading 

systems may not always contribute to market stabilization, as their design intends. Instead, 

their reaction to volatility changes—regardless of the direction—can introduce additional 

instability. This tendency to exacerbate volatility during market shocks is a critical finding, 



indicating the need for further refinement in the design and regulation of these algorithms 

to prevent unintended consequences that could undermine market stability. 

In conclusion, our simulation results underscore the complex and sometimes paradoxical 

behaviour of Q-learning algorithms in response to both stochastic and fixed-time regime 

changes. While these algorithms demonstrate a capacity for enhanced market efficiency and 

rapid adaptation, their initial responses to volatility shifts—especially the counterintuitive 

price hikes during transitions to lower volatility—highlight their potential to exacerbate 

market instability. This nuanced behaviour suggests that while Q-learning algorithms can 

contribute positively to market dynamics under stable conditions, their reactions to sudden 

volatility changes can introduce additional risks. These findings call for careful 

consideration in the design and regulation of algorithmic trading systems, emphasizing the 

need for safeguards to mitigate the unintended consequences that can arise during periods 

of market stress. By addressing these challenges, we can better harness the benefits of 

algorithmic trading while ensuring the robustness and stability of financial markets. 

  



Chapter 5: Conclusion and Recommendations 

5.1 Summary of Findings 

This study has thoroughly examined the behaviour of Q-learning algorithmic trading 

systems during periods of market shocks and heightened volatility. By employing 

simulations based on a Markov process to model volatility changes, we have gained insights 

into the responsiveness, stability, and impact of Q-learning-based strategies on market 

dynamics. 

Our findings reveal the nuanced role of Q-learning algorithms in financial markets. Although 

it might seem that these algorithms exacerbate volatility during periods of market state 

changes, adverse selection causes them to react less than they would in an optimal 

equilibrium. This is because they seek a more competitive position to attract more clients. 

Under normal conditions, Q-learning algorithms demonstrate robust adaptability and 

contribute to price stabilization. However, during periods of extreme volatility, their 

performance highlights the need for hybrid models that combine Q-learning with other 

strategies to enhance market resilience. 

Moreover, the study found that the learning rate (alpha) and the exploration rate (epsilon) 

significantly influenced the performance of Q-learning algorithms. Higher learning rates 

allowed the algorithms to adapt more quickly to new information, but also led to greater 

instability in highly volatile environments. Conversely, lower learning rates resulted in 

more stable but slower adaptation. The exploration rate also played a crucial role; a fixed 

rate of exploration helped the algorithms discover more optimal strategies but increased 

the risk of erratic behaviour during market shocks, while a decaying one allowed them to 

almost reset, in the latest stages, the price changes caused by volatility shifts. 

5.2 Implications 

These findings have several implications for both researchers and practitioners. Firstly, the 

adaptability of Q-learning algorithms in stable markets suggests their potential for 

improving trading efficiency and liquidity provision. Their ability to maintain consistent 

pricing strategies under stable conditions can enhance market efficiency, reduce transaction 

costs, and provide better liquidity. This aligns with previous studies that highlight the 

benefits of algorithmic trading in improving market liquidity and efficiency. 

However, their tendency to exacerbate volatility during market shocks calls for the 

development of hybrid models that combine Q-learning with other strategies to enhance 

stability. Incorporating mechanisms that allow for more controlled and gradual adjustments 

in trading strategies during periods of high volatility could mitigate the risks associated 

with sudden market shocks. 



Additionally, regulatory frameworks must evolve to address the potential risks posed by 

algorithmic trading. The study underscores the importance of implementing safeguards and 

regulatory measures to mitigate the adverse effects of these algorithms during periods of 

high volatility. Policymakers and financial institutions should consider the findings to 

ensure robust and resilient trading systems that can withstand market shocks. This includes 

developing guidelines for algorithmic behaviour in response to market stressors and rules 

to prevent events similar to the 2010 Flash Crash. 

5.3 Recommendations for Future Research 

Future research should focus on developing hybrid models that combine Q-learning with 

other strategies to enhance stability during market shocks. Additionally, exploring the role 

of regulatory measures can provide further insights into mitigating the risks associated with 

algorithmic trading. Researchers should also investigate the application of other 

reinforcement learning algorithms and their potential benefits in different market 

conditions. 

5.4 Final Remarks 

Algorithmic trading, powered by advanced machine learning techniques like Q-learning, 

represents a significant evolution in financial markets. While these technologies offer 

substantial benefits in terms of efficiency and liquidity, their application must be carefully 

managed to avoid unintended consequences during market instability. This research 

highlights the need for continued innovation and regulation to harness the potential of 

algorithmic trading while ensuring market stability and resilience. 

In summary, the dual role of Q-learning algorithms in stabilizing and destabilizing markets, 

depending on volatility conditions, presents both opportunities and challenges. By 

understanding and addressing these dynamics, we can better leverage algorithmic trading 

technologies to enhance financial market performance while safeguarding against systemic 

risks.  
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Appendices 

Table 1: Average price reaction one episode after the change in state. 

Experiment Type Epsilon Alpha State Change 
Average Price 

Change 

Stochastic Changes Constant 1% 
0 to 1 -7% 

1 to 0 25% 

Stochastic Changes Constant 10% 
0 to 1 13% 

1 to 0 -21% 

Stochastic Changes Constant 50% 
0 to 1 38% 

1 to 0 -3% 

Stochastic Changes 
Exponentially 

decreasing 
1% 

0 to 1 17% 

1 to 0 8% 

Stochastic Changes 
Exponentially 

decreasing 
10% 

0 to 1 -11% 

1 to 0 4% 

Stochastic Changes 
Exponentially 

decreasing 
50% 

0 to 1 23% 

1 to 0 10% 

Fixed-Time Changes Constant 1% 
0 to 1 -12% 

1 to 0 -19% 

Fixed-Time Changes Constant 10% 
0 to 1 24% 

1 to 0 -4% 

Fixed-Time Changes Constant 50% 
0 to 1 -12% 

1 to 0 -16% 

Fixed-Time Changes 
Exponentially 

decreasing 
1% 

0 to 1 0% 

1 to 0 -2% 

Fixed-Time Changes 
Exponentially 

decreasing 
10% 

0 to 1 10% 

1 to 0 -5% 

Fixed-Time Changes 
Exponentially 

decreasing 
50% 

0 to 1 -17% 

1 to 0 -4% 

 



Table 2: Mean and Standard Deviation of Realised Spreads per experiment 

Mean of Realised Spreads: 

Stochastic Changes 

 Alpha: 1% Alpha: 10% Alpha: 50% 
Epsilon: Constant 0.31 0.31 0.30 
Epsilon: Exponentially 
Decreasing 

0.40 0.40 0.39 

Fixed-Time Changes 

 Alpha: 1% Alpha: 10% Alpha: 50% 
Epsilon: Constant 0.32 0.32 0.30 
Epsilon: Exponentially 
Decreasing 

0.41 0.41 0.40 

Standard Deviation of Realised Spreads: 

Stochastic Changes 

 Alpha: 1% Alpha: 10% Alpha: 50% 
Epsilon: Constant 1.44 1.36 1.35 
Epsilon: Exponentially 
Decreasing 

1.46 1.41 1.40 

Fixed-Time Changes 

 Alpha: 1% Alpha: 10% Alpha: 50% 
Epsilon: Constant 1.45 1.36 1.35 
Epsilon: Exponentially 
Decreasing 

1.48 1.42 1.42 

 

  



Table 3: Results Summary 

Experiment 
Type 

Epsilon Alpha Initial 
Greedy 

Price 

Stabilized 
Greedy 

Price 

Observations 

Stochastic 
Changes 

Constant 1% ~8 ~6 Slow adaptation, 
stable final prices 

Stochastic 
Changes 

Constant 10% ~8.5 ~5.5 Faster adaptation than 
1% constant 

Stochastic 
Changes 

Constant 50% ~12 ~5.5 Rapid adaptation, 
higher initial 

variability 

Stochastic 
Changes 

Exponentially 
decreasing 

1% ~8 ~7 Dynamic exploration-
exploitation balance 

Stochastic 
Changes 

Exponentially 
decreasing 

10% ~8.5 ~6 Quick adaptation, 
stable final prices 

Stochastic 
Changes 

Exponentially 
decreasing 

50% ~12 ~6 Rapid adaptation, 
quick stabilization 

Fixed-Time 
Changes 

Constant 1% ~8 ~6 Stepwise changes, 
periodic adjustments 

Fixed-Time 
Changes 

Constant 10% ~8.5 ~5.5 Continuous 
exploration, stepwise 
strategy adjustments 

Fixed-Time 
Changes 

Constant 50% ~12 ~5 Rapid initial drop, 
periodic fluctuations 

Fixed-Time 
Changes 

Exponentially 
decreasing 

1% ~8 ~7 Periodic drops, 
gradual stabilization 

Fixed-Time 
Changes 

Exponentially 
decreasing 

10% ~8.5 ~6 Fluctuations, quick 
adaptation 

Fixed-Time 
Changes 

Exponentially 
decreasing 

50% ~12 ~6 Rapid drop, balance of 
exploration and 

exploitation 

 

 

 



Graph 1:  Average Greedy Price Over Episode and Average Realised Spreads 

 

Parameters: 

Experiment Stochastic Changes 
Epsilon Constant 
Alpha 1% 



Graph 2: Average Greedy Price Over Episode and Average Realised Spreads 

 

Parameters: 

Experiment Stochastic Changes 
Epsilon Exponentially Decreasing 
Alpha 1% 



Graph 3: Average Greedy Price Over Episode and Average Realised Spreads 

 

Parameters: 

Experiment Stochastic Changes 
Epsilon Constant 
Alpha 10% 

 



Graph 4: Average Greedy Price Over Episode and Average Realised Spreads 

 

Parameters: 

Experiment Stochastic Changes 
Epsilon Exponentially Decreasing 
Alpha 10% 



Graph 5: Average Greedy Price Over Episode and Average Realised Spreads 

 

Parameters: 

Experiment Stochastic Changes 
Epsilon Constant 
Alpha 50% 

 



Graph 6: Average Greedy Price Over Episode and Average Realised Spreads 

 

Parameters: 

Experiment Stochastic Changes 
Epsilon Exponentially Decreasing 
Alpha 50% 

  



Graph 7: Average Greedy Price Over Episode and Average Realised Spreads 

 

Parameters: 

Experiment Fixed-Time Changes 
Epsilon Constant 
Alpha 1% 



Graph 8: Average Greedy Price Over Episode and Average Realised Spreads 

 

Parameters: 

Experiment Fixed-Time Changes 
Epsilon Exponentially decreasing 
Alpha 1% 



Graph 9: Average Greedy Price Over Episode and Average Realised Spreads 

 

Parameters: 

Experiment Fixed-Time Changes 
Epsilon Constant 
Alpha 10% 



Graph 10: Average Greedy Price Over Episode and Average Realised Spreads 

 

Parameters: 

Experiment Fixed-Time Changes 
Epsilon Exponentially decreasing 
Alpha 10% 



Graph 11: Average Greedy Price Over Episode and Average Realised Spreads 

 

Parameters: 

Experiment Fixed-Time Changes 
Epsilon Constant 
Alpha 50% 



Graph 12: Average Greedy Price Over Episode and Average Realised Spreads 

 

Parameters: 

Experiment Fixed-Time Changes 
Epsilon Exponentially decreasing 
Alpha 50% 



Graph 13: Epsilon evolution in the two environment settings 

  


