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Chapter 1

Introduction

Finding a systematic, data-centric method for investing and allocating one’s assets has long
been a topic in the investment management industry.

Traditionally, investing has been dominated by a more ”fundamental” approach. This
latter simply consisted in acquiring securities one happened to know about and believed to
have an interesting potential for generating returns. Within this framework, the investment
decision is mostly based on qualitative criteria.

As opposed to this approach, systematic investing tries to find constant policies according
to which one could allocate his/her capital. It can thus be seen as ”meta-investing” since
decisions are not taken at the security level, but at the investment universe level. The main
advantage of this framework are manifold: better diversification, risk control, theoretical
basis.

Since it requires to clearly set the investment objective, systematic investors usually
used a ”mean-variance” utility function (see appendix A.1, equation A.2) to derive optimal
weights for the various assets in the investment universe. The main issue was of practical
order. This range of methods requires one to estimate the distribution of future returns,
or at least its first two moments (the vector of expected excess returns and the covariance
matrix of returns) (see appendix A.1, equation A.4). To that end, investors usually use
parametric models. However, this can be extremely difficult: accuracy can become hard to
find as returns show a low level of predictability and the problem has a significantly high
dimensionality.

Against this backdrop, Brandt, Santa-Clara and Valkanov (2009) [1] have suggested a
new approach. Instead of estimating the moments of returns using parametric models, they
directly try to (parametrically) estimate optimal weights: they bypass the theoretical opti-
mal weight formula A.4. The main idea behind this method is to bypass the estimation of
the return moments (expected returns and covariance matrix of returns mainly).
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However, although seemingly simple, this method can meet several implementation hur-
dles. Depending on the computation and optimization approach one picks, estimation time
can become significant, and an overfitting issue might come into play as well.

This present master thesis aims at replicating Brandt, Santa-Clara and Valkanov’s results
essentially using Python as a coding language, covering a base case where a simple, linear
portfolio policy is adopted, a ’long-only’ case and a final case where transaction costs are
factored in the optimization process.

The motivation essentially stems from that fact that on one side, Python has become
a widely used tool in the financial industry when it comes to data analysis and quanti-
tative studies, and on the other side Brandt, Santa-Clara and Valkanov’s paper provide
well-performing results that could be of interest for many investors. Finding a good way to
implement their method under Python could therefore be of use. Consequently, the final
objective of this master thesis is to shed light on what could be the best (in terms of perfor-
mance and estimation time) approach to such an implementation. In addition to their base,
unconstrained case, it covers the case where portfolio weights cannot be negative (’long-only
constraint’) and transaction costs. The main reason for this is many investor are subject to
a positivity constraint (’long-only’ asset managers) and that transaction costs can materially
affect the net performance of a portfolio.
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Chapter 2

Methodology

2.1 Definitions

Let us consider in our present case that notations will be the same for linear applications
from Ra×b to Rb (for any a, b ∈ N2) and matrices of corresponding shapes in Ra×b.

Also, for any unidimensional function a, let us write its first order and second order
derivatives a′ and a′′.

For multidimensional functions b : c1, c2, . . . , cm 7→ b1(c1, c2, . . . , cm), . . . , bn(c1, c2, . . . , cm),

let us note its Jacobian matrix Jb ≡


∂b1
∂c1

∂b1
∂c2

. . . ∂b1
∂cm

∂b2
∂c1

∂b2
∂c2

∂b2
∂cm

...
. . .

...
∂bn
∂c1

. . . . . . ∂bn
cm

 (note that Jb : Rm → Rm×n).

Finally, for functions d : Rm 7→ R, let us note ∇d its gradient and ∇2
d its Hessian matrix

when they exist.

Let us consider a period of T ∈ N months, a utility function u : R → R. At each
period t ∈ J0;T − 1K, let there be Nt investable securities in our universe, with a return
ri,t,∀i ∈ J1;NtK.

At each period t and for each security i, let a set of exogeneous, K-dimensional data
be noted xi,t ≡ (x1,i,t, x2,i,t, . . . , xK,i,t). The method is to apply a weighting scheme wi,t :
RK+L → R that depends on this data and on a set of L-dimensional parameters θ ≡
(θ1, θ2, . . . , θL). Weights should add up to 1 at any point in time: ∀t ∈ J0;T−1K,

∑Nt

i=0 wi,t(xi,t, θ) =
1

Let us also define equivalents at the scale of the investment universe (and not at the
scale of securities): ∀t ∈ J0;T − 1K, rt+1 ≡ (r1,t+1, . . . , rNt,t+1), xt ≡ (x1,t, . . . , xNt,t), wt ≡
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(w1,t, . . . , wNt,t). Note that rt+1 is of size Nt × 1 and not Nt+1 × 1: only securities that are
investable in t are taken into account.

A first thing to stress would be that in our case, θ is not time dependent; however, it
could be in some extensions of our problem.

2.2 Problem formulation

Following the approach of Brandt, Santa-Clara and Valkanov (2009) [1], the intertemporal
utility should be maximised:

max
θ

[
E
[
u
(
wt(xt, θ)

ᵀrt+1

)]]
(2.1)

s.t. wt(xt, θ)
ᵀ1 = 1, ∀t ∈ J0;T − 1K (2.2)

with 1 ≡ (1, . . . , 1) ∈ RNt .

However, in practice, the optimization programme therefore becomes the following (em-
pirical equivalent):

max
θ

[ 1

T

T−1∑
t=0

u
(
wt(xt, θ)

ᵀrt+1

)]
(2.3)

subject to the same feasibility constraint (weights adding up to one). Our aim is to find
the corresponding

θ∗ ≡ arg max
θ

[ 1

T

T−1∑
t=0

u
(
wt(xt, θ)

ᵀrt+1

)]
(2.4)

under the feasibility constraint.

Since in our present case, our utility function and weighting scheme are likely to be
continuous and differentiable (at least twice), one can find the optimum using a first order
condition.

Let the objective function be:

H : θ 7→ 1

T

T−1∑
t=0

u
(
wt(xt, θ)

ᵀrt+1

)
(2.5)

and the constraint functions g ≡ (g1, . . . , gT ):

∀t ∈ J0, T − 1K, gt : θ 7→ wt(xt, θ)
ᵀ1− 1 (2.6)
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2.3 Approach

Finding the parameters θ∗ that maximize the intertemporal utility H (see 2.5) is generally
done numerically. Although one can always simulate a number of different parameters and
pick the one that maximizes the objective function (’naive’ approach, cf. infra), this method
can become very costly when computation costs and dimensions are high. This is why the
present thesis explores other approaches to inferring the parameters.

The approaches that will be tested that are explained and tested in what follows rely on
’first order conditions’. These latter are equations of the form m(θ∗) = 0. The function m
(and at times its Jacobian matrix Jm) are essential components used in different optimization
algorithms. One thus need to find them, or at least approximate them, and then run an
optimization algorithm.

In what follows, the first subsection dwells on what m functions and Jm matrix can
be used in different cases (i.e. ways of handling the feasibility constraint). The second
subsection dwells on what optimization algorithms are to be tested in the present master
thesis.

2.3.1 First order condition

According to the saddle-point theorem, parameters that maximize the (convex) objective
function should also be saddle-points of a Lagrangian function (linear combination of the
objective function and the constraints). In what follows, the derived m functions and Jm
matrices are thus the gradient and Hessian matrix of this Lagrangian function, respectively.

To compute m and Jm, one thus first needs to set a Lagrangian function L that depends
on the objective function and the feasibility constraint. However there are several ways of
specifying this function, depending on how one chooses to handle the feasibility constraint.
For each, analytical formulas for m and Jm will be provided in this section.

The first solution is to ’brute force’ the constraint and directly run our optimization over
a Lagrangian function that directly considers it as a set of equality constraints. While this
may be a standard approach, it can be computationally costly (the number of constraints
and thus multipliers to estimate grows with T ). A second solution is to specify within
the weighting scheme (at the investment universe scale) that the last weight should be 1
minus the sum of all others. However, it is hard to say if in practice, this method is less
costly than the first one. Also, it holds less generalization power as it may be harder to
implement extensions such as new constraints on weights. A third solution can be to embed
an normalization form within the weighting scheme:

∀t ∈ J0;T − 1K,∀i ∈ J1, NtK, wi,t ≡
w̃i,t∑Nt

j=1 w̃j,t
(2.7)
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where w̃i,t denotes the weighting scheme before the normalization. Alternatively,

∀t ∈ J0;T − 1K, wt ≡ (w̃ᵀ
t 1Nt)

−1w̃t (2.8)

One last solution is to bypass this constraint by normalizing (centering and reducing)
the features to take into account in the model (cf. infra). While it is the most attractive
approach in terms of computation costs, it is applicable only in specific cases (and restrictive)
cases.

Lagrangian method The Lagrange multiplier theorem states that there exists a unique
λ∗ ≡ (λ0, . . . , λT−1) ∈ RT such that ∇θH(θ∗) = λ∗∇θg(θ∗). To solve the problem one can
thus use a first order condition on our Lagrangian function L : θ, λ 7→ H(θ) + λg(θ). It can
be written as follows:

1

T

T−1∑
t=0

u′
(
wt(xt, θ

∗)ᵀrt+1

)(
rᵀt+1Jwt(xt, θ

∗)
)

+ Tλ∗t1
ᵀJwt(xt, θ

∗) = 0 (2.9)

One can adjust the λt coefficients by a scale of 1
T

to have a little bit simpler equations,
hence:

m(θ∗, λ∗) ≡ 1

T

T−1∑
t=0

u′
(
wt(xt, θ

∗)ᵀrt+1

)
rᵀt+1Jwt(xt, θ

∗) + λ∗tJwt(xt, θ
∗)ᵀ1 = 0 (2.10)

Here 0 = (0, . . . , 0) ∈ RL

The Jacobian matrix of m has then an L× (L+ T ) shape:

Jm =
1

T

T−1∑
t=0

[
Jᵀ
wt
rt+1u

′′(wᵀ
t rt+1)rᵀt+1Jwt + u′(wᵀ

t rt+1)
Nt∑
i=1

ri,t+1∇2
wi,t

+
Nt∑
i=1

∇2
wi,t︸ ︷︷ ︸

L× L matrix

, Jᵀ
wt

1, . . . , Jᵀ
wt

1︸ ︷︷ ︸
T matrices of shape L× 1

]
(2.11)

As underlined earlier (cf. supra), in this case the complexity of the computation (size
of Jm) to perform grows with the sample size, which is why this method will not to be
privileged in the present case.

1-minus method The procedure is roughly the same, except the weighting scheme w
factors in the constraint. As a result, there is no apparent constraint in our programme.
The first order condition becomes:

m(θ∗) =
1

T

T−1∑
t=0

u′
(
wt(xt, θ

∗)ᵀrt+1

)
rᵀt+1Jwt(xt, θ

∗) = 0 (2.12)
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Therefore estimating λ∗ is not needed. The Jacobian matrix of m has then an L × L
shape:

Jm =
1

T

T−1∑
t=0

[
Jᵀ
wt
rt+1u

′′(wᵀ
t rt+1)rᵀt+1Jwt + u′(wᵀ

t rt+1)
Nt∑
i=1

ri,t+1∇2
wi,t︸ ︷︷ ︸

L× L matrix

]
(2.13)

Normalization method The Jacobian matrix Jm has essentially the same form as in the
previous case (see equation 2.13). However, one still needs to express Jwt and ∇2

wi,t
as a

function of Jw̃t , ∇w̃i,t
and ∇2

w̃i,t
. Using the notations in equation 2.8:

∀t ∈ J0;T − 1K, Jwt = (1ᵀ
Nt
w̃t)
−1Jw̃t − w̃t

(
(1ᵀ

Nt
w̃t)
−21ᵀ

Nt
Jw̃t

)
(2.14)

∀t ∈ J0;T−1K,∀i ∈ J1;NtK,∇2
wi,t

= (1ᵀ
Nt
w̃t)
−4

[
∇ᵀ
w̃i,t

(
1ᵀ
Nt
Jw̃t

)
+w̃i,t

( Nt∑
j=1

∇2
wj,t
−2Jᵀ

w̃t
1Nt1

ᵀ
Nt
Jw̃t

)]
(2.15)

2.4 Optimization algorithms

The aim of this subsection is to give more detail on the different optimization algorithms
that are to be tested.

2.4.1 Naive estimation

A first method for finding the optimal parameters of the model is a ’naive’ one: one simply
simulates a high number of parameters over a given interval (or hypercube), and then des-
ignates as estimator the one that optimizes the objective function (or minimize the norm of
its gradient when the constraints cannot be internalized in the formulation of the objective
function):

θ̂ = arg max
θ∈Θ̃

H(θ) (2.16)

where Θ̃ = (θ1, . . . , θn) is a sample drawn from a possible space for parameters.

2.4.2 Gradient descent

A second method is a widely used approach in machine learning. The gradient descent con-
sists in iteratively adding / substracting the gradient of the objective function / Lagrangian
function to a previous starting parameter (depending on if one wants to maximize / mini-
mize), up to a multiplicative factor η (a ’step’).
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Several improvements of this method that provide more optimal steps have already been
put in place, however the present master thesis will only cover the case where η is constant.
More specifically (given one wants to minimize −H):

1. Pick a starting vector of estimates θ̂0

2. Successively update its value using the following equation:

θ̂n+1 = θ̂n − ηm(θ̂n)ᵀ (2.17)

3. Stop iterating when m(θ̂n) is close enough to 0, i.e. for a given ε ∈ R∗+:

‖m(θ̂n)‖2
I≡ m(θ̂n)m(θ̂n)ᵀ < ε (2.18)

Alternatively, one can also choose to stop iterations (also referred to as ’epochs’) when a
certain number of iterations is reached. In practice, it equates to replacing a ’while’ loop by
a ’for’ loop, and helps control overfitting.

2.4.3 Newton-Ralphson

One method that generally converges more quickly towards optima than a simple gradient
descent is the Newton-Ralphson algorithm. It consists in finding the roots of the objective
/ Langrangian function gradient through the Newton method. In practice, it is the same as
the gradient descent, except the constant step η is replaced by the inverse (or pseudo-inverse
in a non-square case, i. e. when constraints are not internalized) of the Jacobian matrix of
the gradient. More specifically:

1. Pick a starting vector of estimates θ̂0

2. Successively update its value using the following equation:

θ̂n+1 = θ̂n − (Jᵀ
m(θ̂n)Jm(θ̂n))−1Jᵀ

m(θ̂n)m(θ̂n)ᵀ (2.19)

3. Stop iterating when m(θ̂n) is close enough to 0, i.e. for a given ε ∈ R∗+:

‖m(θ̂n)‖2
I≡ m(θ̂n)m(θ̂n)ᵀ < ε (2.20)

Numerical v. analytical gradient The previous section details the analytical formulas
for the gradients of our problem that are used in the optimization algorithms. However,
deriving the precise formula for each use case can quickly become burdensome. This is why,
in practice some may resort to the following approximation of the gradient, that one may
define as ’numerical gradient’:
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∇m ≈


m(θ1+h,θ2,...,θL)−m(θ1,θ2,...,θL)

h
m(θ1,θ2+h,...,θL)−m(θ1,θ2,...,θL)

h
...

m(θ1,θ2,...,θL+h)−m(θ1,θ2,...,θL)
h

 (2.21)

Testing the different estimation times for each of these methods is detailed in the ’Re-
sults’ section.

In addition, PyTorch has an ’autograd’ feature that automatically computes the analyt-
ical gradient of a model. This is another way of saving the handmade derivation of m (see
3.2.3).

2.5 Evaluating the precision of estimators

Beyond estimating the parameters of a given weighting scheme, one may need to evaluate
the significance of our estimators.

2.5.1 Generalized method of moments

Brandt, Santa-Clara and Valkanov [1] choose to interpret the first order condition 2.12 as
a case of a generalized method of moments, so that one may derive an analytical formula
for the variance (and therefore standard deviation) of our estimators (see appendix A.2 for
details on the GMM). From Hansen (1982) [2], after having estimated the covariance matrix
V of our first order condition function this way (in the following a normalization approach
is assumed):

V =
1

T

T−1∑
t=0

u′
(
wt(xt, θ̂)

ᵀrt+1

)2

rᵀt+1Jwt(xt, θ̂)Jwt(xt, θ̂)
ᵀrt+1 (2.22)

one can compute an asymptotic covariance matrix for our estimator θ̂:

Σ̂θ̂ =
1

T

[
GᵀV −1G

]
(2.23)

where G ≡ 1
T

∑T−1
t=0 u

′′(wᵀ
t rt+1)

(
rᵀt+1Jwt

)ᵀ
(rᵀt+1Jwt).

2.5.2 Bootstrapping

Brandt, Santa-Clara and Valkanov [1] also suggest a ’bootstrapping’ method for the estima-
tion of the covariance matrix of our estimator. The idea is to simulate the estimation of the
target parameters θ∗ M times on M subsamples of our dataset ((xt, rt+1))t∈[[0;T−1]] that are
drawn with replacement. On this population of size M , one simply computes the covariance
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matrix.

One may note that while this method might appear simple to implement and robust, it
has a significant drawback, which is the computation cost.
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Chapter 3

Implementation

3.1 Starting point: linear model for weights, CRRA

utility function, and 3 well-known factors

Following the example given by Brandt, Santa-Clara and Valkanov [1], we first choose to
apply our approach to a basic framework: a linear specification for weights, a CRRA utility
function and the 3 well-known factors from Fama, French, Booth and Sinquefield (1993) [3]
and Carhart (1997) [4].

3.1.1 A linear model for a portfolio policy

A convenient choice the function wt, t ∈ J0, T − 1K can be a linear specification:

∀t ∈ J0;T − 1K, ∀i ∈ J1, NtK, wi,t = w̄i,t +
1

Nt

θᵀxi,t (3.1)

where w̄i,t denotes the weight of asset i in a benchmark portfolio at time t, and the
features xi,t are standardized. The advantages of this specification are manifold:

• It simplifies the optimization problem: on top of simpler analytical forms in our op-
timization program, one does not need to factor in the feasibility constraint. As for
all i, t, E[θᵀxi,t] = θᵀE[xi,t] = 0, the weights wi,t do add up to one. Note that this is
specific to our linear weight function with standardized features;

• It can easily be interpreted;

• It captures the idea of active portfolio management as deviations from a benchmark.

3.1.2 A constant relative risk aversion utility

A constant relative risk aversion utility function (CRRA) is to be used:

∀r ∈ R : u(r) ≡ (1 + r)1−γ

1− γ
(3.2)
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The interest of this function is namely the fact it is twice continuously differentiable, com-
monly used, reflects a decreasing marginal utility of returns and does not depend on the
investor’s initial wealth.

3.1.3 Features directly drawn from the Fama-French-Carhart 4-
factor model

We choose to only use 4 exogenous inputs. For all t in J0;T − 1K, for i in J1, NtK, the
weight of a stock in the benchmark portfolio w̄i,t (interpreted as intercept), the log of its
market capitalization mei,t, the log of its book-to-market ratio btmi,t and its lagged one-year
return momi,t. The main advantages of picking these factors as features for our problem
is that we can check the coherence of our method with empirical results that can be found
in the literature around risk factors impacting stock returns. As a consequence, one must
infer L = 3 parameters. As for notations, w̄i,t in xi,t is not included and as such xi,t =
(mei,t, btmi,t,momi,t) and K = L = 3, and w̄t = (w̄1,t, . . . , w̄Nt,t).

3.1.4 Simpler formulas and problem

Following the previous specifications:

• A simple utility function first derivative:

∀r ∈ R, u′(r) = (1 + r)−γ (3.3)

• A simple utility function second derivative:

∀r ∈ R, u′′(r) = −γ(1 + r)−1−γ (3.4)

• A simple weighting function 3.1;

• A simple Jacobian matrix for the weighting function (K ×Nt shape):

∀t ∈ J0;T − 1K, Jwt(xt, θ) =
1

Nt

xt (3.5)

• Even simpler Hessian matrices:

∀t ∈ [[0;T − 1]],∇2
wi,t

= 0 (3.6)

Consequently:

• A simple first order condition (no constraint):

1

T

T−1∑
t=0

(
1 + (w̄t +

1

Nt

xtθ)
ᵀrt+1

)−γ 1

Nt

rᵀt+1xt = 0 (3.7)
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• A simple Jacobian matrix for our m function:

Jm(θ) =
−γ
T

T−1∑
t=0

(
1 + (w̄t +

1

Nt

xtθ)
ᵀrt+1

)−1−γ 1

Nt
2x

ᵀ
t rt+1r

ᵀ
t+1xt (3.8)

By stating x̃t ≡ 1
Nt
xt for all t:

m(θ) =
1

T

T−1∑
t=0

(
1 + (w̄t + x̃tθ)

ᵀrt+1

)−γ
rᵀt+1x̃t = 0 (3.9)

Jm(θ) =
−γ
T

T−1∑
t=0

(
1 + (w̄t + x̃tθ)

ᵀrt+1

)−1−γ
x̃ᵀt rt+1r

ᵀ
t+1x̃t (3.10)

Note that in our case, the Jacobian matrix is K×K and pseudo-inverse in equation 2.19
can be replaced by the simple inverse: the optimization algorithm becomes as follows:

1. Pick a starting vector of estimates θ̂0

2. Successively update its value using the following equation:

θ̂n+1 = θ̂n − Jm(θ̂n)−1m(θ̂n)ᵀ (3.11)

3. Stop iterating when m(θ̂n) is close enough to 0, i.e. for a given ε ∈ R∗+:

‖m(θ̂n)‖2
I≡ m(θ̂n)m(θ̂n)ᵀ < ε (3.12)

3.2 A first extension: long-only portfolios

In many cases, investors cannot short sell securities: they are under a constraint of keeping
weights positive. In the previous approach, this is not accounted for and the parameters then
found might not be optimal for a ’long-only’ strategy. The next section aims at developing
the method to effectively estimate optimal parameters in that case.

3.2.1 A non-linear model

Being subject to a ’long-only’ constraint slightly tweaks the previous formulation of our
portfolio policy 3.1. The weights are now given by the following formula:

∀t ∈ J0;T − 1K,∀i ∈ J1, NtK, wi,t = max
(
w̄i,t +

1

Nt

θᵀxi,t, 0
)

(3.13)

At this point weights do not ’naturally’ sum up to one as they did before. This implies
one needs to adopt one of the methods highlighted in Chapter 1 to handle the feasibility
constraints. In what follows, the normalization approach 2.14 will be used.
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3.2.2 Implications on optimization

One significant issue is that our objective function is no longer differentiable at any point in:

ΘND ≡ {θ ∈ RL : ∃t ∈ J0;T − 1K, i ∈ J1;NtK : w̄i,t +
1

Nt

θᵀxi,t = 0} (3.14)

For this kind of issue, although one more optimal choice would be to use a ’subgradient’
method, in practice machine-learning practitioners resort primarily to ’stochastic gradient
descent’ (’SGD’). This latter approach is very similar to gradient descent, excepts it does
not use all of the dataset points to compute the gradient, but rather one (or a small number
of data points in the case of mini-batch gradient descent).

In the present case, SGD can be equivalent to ’replacing’ H (see definition 2.5) with a
simpler function ht : θ 7→ u(wt(xt, θ)

ᵀrt+1) for a given t and iterating the optimization steps
of a traditional gradient descent algorithm for all t in J0;T − 1K, and then over again until
a satisfactory precision has been obtained. The m function and its Jacobian matrix become
respectively (using the normalization approach):

m : θ 7→ u′
(
wt(xt, θ)

ᵀrt+1

)
rᵀt+1Jwt(xt, θ) (3.15)

Jm = Jᵀ
wt
rt+1u

′′(wᵀ
t rt+1)rᵀt+1Jwt + u′(wᵀ

t rt+1)
Nt∑
i=1

ri,t+1∇2
wi,t

(3.16)

Note that m and Jm are only defined over Θc
ND. While in essence it does not solve the

problem, in practice using this approach allows to only have extremely small probabilities
to end on a point of non-differentiability.

3.2.3 Reinterpretation of the problem as a graph

In practice, implementing these model and optimization can be demanding, especially if each
time one needs to analytically derive the gradient of our objective function. That is one can
represent the previous methodology under a graph form. This way, implementation using
specialized frameworks (Torch/Pytorch, Tensorflow) can be easier, notably when it comes
to gradient computation through backpropagation (see appendix A.3) that can be done au-
tomatically.

One may note that it becomes equivalent to implementing a simple convolutional neural
network that is simply composed of one convolutional layer, with one output channel, and
with a kernel of shape 1× L.

Considering a ’negative’ utility (−H or −h depending on if one performs SGD or not,
see objective function definition 2.5) as a loss function, the optimization problem becomes
implementable under machine learning frameworks more easily.
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Figure 3.1: A graph representation of our simple, unconstrained linear model.
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Figure 3.2: A graph representation of our long-only, normalized linear model.
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3.3 A second extension: transaction costs

When dynamically implementing an investment policy in practice, investor face transaction
costs. Investments based on previous approaches may prove too demanding in terms of port-
folio turnover, and as a result the real, net financial performance of the investor can become
very bad.

Consequently it appears important to include a way to factor in transaction costs in the
optimization process.

3.3.1 Including transaction costs in the objective function

To account for transaction costs, Brandt, Santa-Clara and Valkanov (2009) [1] suggest to
make it proportional to the turnover of each stock. More specifically, the total transaction
costs at time t are

∑Nt

i=1 ci,t|wi,t − wi,t−1|. This implies that one can modify the objective
function by ’regularizing’ it using these costs:

Hreg : θ 7→ 1

T

T−1∑
t=0

u
(
wt(xt, θ)

ᵀrt+1 −
Nt∑
i=1

ci,t|wi,t − wi,t−1|
)

(3.17)

Let us define hreg,tθ 7→ u
(
wt(xt, θ)

ᵀrt+1−
∑Nt

i=1 ci,t|wi,t − wi,t−1|
)

for the purpose of using
SGD.

Although one could simply take a constant transaction cost across securities and time
ci,t = 0.5% ∀t ∈ J0;T − 1K, i ∈ J1;NtK, this would fail to take into account the fact that
these costs depend on the size of the companies and that they showcase a diminution over
time.

Here, based on Keim and Madhavan (2009) [5], Domowitz, Glen and Madhavan (2001)
[6], Hasbrouck (2006) [7], Brandt, Santa-Clara and Valkanov (2009) [1] suggest a linear
explanation for the variations in transaction costs:

∀t ∈ J0;T − 1K, i ∈ J1;NtK, ci,t = (0.006− 0.0025mei,t)Tt (3.18)

where mei,t denotes the size factor and is standardized between 0 and 1, and where Tt
is a ’trend such that costs in 1974 are four times larger than in 2002’. In what follows, Tt
is assumed linear in t, and to have average value of 0.5% over the period spanning from

t1 =01/01/1974 to t2 =31/12/2002, and that
∑Nt1

i=0 ci,t1 = 4×
∑Nt2

i=0 ci,t2 .

The approach is to compute
Tt2
Tt1

=
Nt2

∑Nt1
i=0 zi,t1

4Nt1

∑Nt2
i=0 zi,t2

and Tt1 = 1
T

∑T−1
t=0

1+(t−t1)

Tt2
Tt1
−1

t2−t1

0.005

∑Nt

i=1
zi,t
Nt

and to plug them in:
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Tt = Tt1 + (t− t1)

Tt2
Tt1
− 1

t2 − t1
Tt1 (3.19)

3.4 Dataset adjustments

In practice, performing security-wise operations (at the ’i, t’ level) can become computation-
ally costly since it requires a lot of Python operations. As Python is a high-level language,
it can be pretty slow, and as a result estimation time can become very long.

On the contrary, time-period-wise operations (at the t level) can be done much faster.
The main reason is that most matricial operations in Python are done using libraries such as
NumPy or PyTorch, which internally resort to a lower level language (such as C) and thus
showcase much lower computation times.

This is why here we would like to speed up the computation of transaction costs by doing
matricial operations such as wt − wt−1.

Now, let us consider the case where at a time t, one wants to invest in a security i that
just did not exist in t−1. In this case, wi,t−wi,t−1 can be problematic to compute in practice.
Although one can set that wi,t−1 = 0 in this case, implementing this idea into code, since it
may cause input size mismatches when one tries to compute wt − wt−1. The same goes for
a security j that existed in t− 1 but does no longer exist in t: wj,t = 0 but in practice this
might cause mismatches as one performs matricial computations.

One solution to this could be to do a ’padding’ of our dataset, meaning that for each
stock one adds to the dataset lines where the stock does not exist and fill them with null
values. However there are two major drawbacks to this approach. The first one is that one
cannot guarantee weights of zero for formerly non-existing securities. The second one is the
implied great sparsity of the dataset that may cause computation hurdles.

Instead, another solution (that will be tested) is to build state-transition matrices Mt

for each time t that will handle the ’matching’ of weights in t− 1 and t. For instance, if at
t − 1 there were only 4 securities, that the first, second and fourth have ’survived’ but not
the third, and that two new securities appeared, the matrix Mt would be the following:

Mt =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 (3.20)

The idea is to start from the identity matrix of size Nt−1, then remove the lines where
securities disappeared, and finally add Nt−Nt−1 lines filled with zeros at the bottom of the
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matrix. One may note that Mt is of size Nt ×Nt−1.

This way, if one replaces wt − wt−1 by wt −Mtwt−1, one can quickly compute our trans-
action cost in a matricial fashion. Since no initial holdings are assumed, M0w−1 ≡ 0RN0 is
assumed. Of course, for this to work one first needs to sort the securities by ’birth’ dates.

3.5 Data

3.5.1 The CRSP-Compustat merged dataset

The present study is based on the CRSP-Compustat merged datasets. Our timeframe spans
from 1964 to 2002. This dataset provides monthly security data and yearly financial informa-
tion stocks (share code: 10, 11) trading in the following exchanges: NYSE, NASDAQ, AMEX
(exchange code: 1, 2, 3). Since the focus is mainly on monthly total returns, size, value and
momentum, only the following features are retained: ret, dlret, at, lt, txditc, pstk, csho, prc
(respectively the monthly total security return, the monthly return in case of delisting, the
total assets, total liabilities, deferred taxes and investment credits, preferred shares, current
number of shares outstanding, current share price). The accounting information that is
available at time t is ensured to be at least 6-month old.

Market capitalization is computed as ME ≡ csho × prc, and the book value as BV ≡
at− lt+ txditc−pstk, then size feature as me = ln (ME) and the book-to-market feature as
btm = ln (1 + BV

ME
). Finally, the momentum feature at time t is computed as the cumulative

product of total gross returns (i.e. 1 + ret+ dlret) from months t− 13 to t− 2 included.

3.5.2 Practical considerations

In practice, searching through the dataset at each iteration in our optimization process can
become very long. That is why, for speed considerations, rt+1 are also added as a column,
as well as ci,t. Having these columns ready before the start of the optimization routine saves
considerable time and possible, since they do not change with the model. On the contrary,
the effective transaction costs ci,t|wi,t − wi,t−1| can make the whole process much longer for
the same reason, but wt−1 cannot be computed ex ante since it precisely depends on the
optimized values of θ.

Also, when it comes to PyTorch implementation and SGD, a ’data loader’ needs to be
built on top of the dataset, so that for each month t data points are segregated. This way,
only one month of data is passed at each computation of h. The dataloader is essentially a
list of slices (according to the month t) of the whole dataset.

Finally, regarding the implementation of the transaction cost ’regularization’, computing
the state-transition matrices is relatively fast, however storing them can demand a lot of
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memory space. This is why nesting the construction of these matrices within the data-loader
allows not to save them.
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Chapter 4

Results

4.1 Base case: unconstrained weights, no transaction

costs

Tables 4.1 and 4.2 present parameters obtained for different optimization methods when
using a simple linear portfolio policy as in our base case (respectively in-sample and out-of-
sample). It also shows the standard deviations estimates obtained through bootstrapping,
as well as different evaluation metrics for the implied portfolios. These are (in descending
order): average absolute weight on one security (×100), maximum weight on one security
(×100), minimum weight on one security (×100), average proportion of securities sold short,
average weight of the short-selling part of the portfolio, portfolio turnover, certainty equiv-
alent, average return of the portfolio, standard deviation of the portfolio returns, Sharpe
ratio, α with regards to the market portfolio (intercept of the regression of excess returns
over market excess returns), β with regards to the market portfolio (coefficient of the regres-
sion of excess returns over market excess returns), the standard deviation of the residuals
of the latter regression, Information Ratio, size, value and momentum characteristics of the
portfolio, computed as Nt

∑Nt

i=1 wi,txi,t. The ’BSCV’ and ’Market’ columns present the re-
sults obtained when weights are respectively computed using the parameters from Brandt,
Santa-Clara and Valkanov (2009) [1] and (0 , 0, 0). The format is the same for all the results
tables. In-sample estimates are computed using the whole 1964-2002 interval, whereas the
out-of-sample estimates only using the 1964-1974 interval. Portfolio metrics are shown for
the period 1974-2002.

The first thing to notice is that our first estimations remain somewhat consistent in signs
with the literature. At least over this period of time, investors would want to be overweight
value stocks showcasing momentum, and significantly positive parameters estimates for btm
and mom are found. However, the estimate of θme remains disappointing as it appears not
to be significant in two out of three approaches (naive and Newton-Ralphson). What is
more, it appears significantly positive for the gradient descent method (GD). This could be
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explained by the fact that as well underlined by Brandt, Santa-Clara and Valkanov, the sign
of this parameter does change according to the slope of the yield curve over time. If one
averages the estimation over time, statistical significance can be lost.

A second point would be to underline the similarities and differences between the differ-
ent optimization approaches. In terms of computation time, to compute in-sample param-
eters, achieving results presented in 4.1 took the naive algorithm 120 seconds, the simple
gradient descent algorithm 6 seconds and the Newton-Ralphson algorithm 2 seconds. How-
ever, Newton-Ralphson appears much more prone to overfitting the data than the other two
methods. Indeed, it features much higher standard deviations in estimates and out-of-sample
estimates become unsignificant. This could be attributed to the great speed at which it may
converge towards local minima of our objective function (and stays stuck in it). As a conse-
quence, the simple gradient descent might appear as a rather good choice (or at least better)
for the optimization problem (see 4.3 for what kind of GD algorithm one could choose).

A third point would be to compare the magnitude of our results: in absolute value, they
are almost always higher than the results of Brandt, Santa-Clara and Valkanov (2009) [1].
Again, this could be attributed to some extent to overfitting, as out-of-sample results appear
to be less stable (higher standard deviation).

A fourth point would be about the respective portfolio performance. Our portfolios do
show in- and out-of-sample outperformance compared to the market portfolio and the pa-
rameters from Brandt, Santa-Clara and Valkanov (2009) [1] in terms of Sharpe ratio, α and
information ratio. However, they show underperformance in terms of certainty equivalent.
Considering the previous point, one may simply explain this by the fact that our optimiza-
tion appears less sensitive to risk-aversion, and allows itself to ’boost’ deviations through
greater parameters at the cost of increased volatility and β.

As with what follows, one may also explain a divergence in results stemming from dif-
ferences between the present dataset, and the dataset used by Brandt, Santa-Clara and
Valkanov’s.

4.1.1 Numerical v. analytical gradient

In table 4.3, estimates found using numerically approximated gradients and analytically de-
duced ones are compared when using a gradent descent algorithm. Here the number of
epochs is fixed to 100 and no precision threshold ε has been set, hence different results than
for GD than in table 4.1. This way one can assess at the same time how ’far’ are the pa-
rameters from the previously found minimum (and thus how quickly the method converges),
and how much time it takes for one method to perform a given amount of epochs.

One can see that between a traditional analytical implementation (using Pandas and
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In-sample
Variable Naive GD (simple) NR BSCV Market

θ̂me 0.586 0.613 0.672 -1.451 -
σθ̂me

(2.253) (0.321) (1.557) (0.548) -

θ̂btm 9.000 7.799 8.668 3.606 -
σθ̂btm (0.715) (0.461) (3.992) (0.921) -

θ̂mom 7.566 7.415 7.992 1.772 -
σθ̂mom

(0.351) (0.450) (3.522) (0.743) -
|wi,t| 0.182 0.167 0.181 0.074 0.026
maxwi,t 8.699 8.589 9.241 5.098 5.487
minwi,t -1.140 -1.053 -1.152 -0.324 -
ΣI(wi,t < 0)/Nt 0.473 0.471 0.473 0.442 -
Σwi,tI(wi,t < 0) -2.782 -2.517 -2.780 -0.880 -
Σ|wi,t+1 − wi,t| 2.129 2.027 2.199 0.657 0.078
CE 0.029 0.029 0.029 0.014 0.007
r̄ 0.900 0.839 0.918 0.330 0.152
σ(r) 0.711 0.640 0.717 0.299 0.171
SR 0.486 0.494 0.499 0.286 0.142
α 0.040 0.038 0.041 0.012 -
β 1.381 1.353 1.386 1.065 1.000
σ(ε) 0.080 0.072 0.079 0.046 -
IR 0.504 0.526 0.522 0.264 0.131
me 1.719 1.913 1.867 0.334 2.141
btm 6.249 5.185 5.843 2.877 -0.237
mom 5.043 5.162 5.507 0.804 0.019

Table 4.1: Simple linear portfolio policy - IS results
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Out-of-sample
Variable Naive GD (simple) NR BSCV Market

θ̂me -0.175 -0.029 0.129 -1.124 -
σθ̂me

(2.075) (0.731) (3.451) (0.709) -

θ̂btm 6.388 4.944 5.608 3.611 -
σθ̂btm (1.857) (0.882) (6.592) (1.110) -

θ̂mom 5.969 5.083 5.376 3.057 -
σθ̂mom

(1.033) (1.156) (4.684) (0.914) -
|wi,t| 0.136 0.113 0.124 0.081 0.026
maxwi,t 6.916 5.920 6.235 5.129 5.487
minwi,t -0.839 -0.686 -0.753 -0.427 -
ΣI(wi,t < 0)/Nt 0.466 0.457 0.460 0.443 -
Σwi,tI(wi,t < 0) -1.987 -1.573 -1.753 -0.995 -
Σ|wi,t+1 − wi,t| 1.655 1.382 1.478 0.901 0.078
CE 0.026 0.024 0.025 0.018 0.007
r̄ 0.680 0.572 0.614 0.404 0.152
σ(r) 0.507 0.411 0.446 0.315 0.171
SR 0.466 0.452 0.460 0.366 0.142
α 0.031 0.025 0.027 0.016 -
β 1.262 1.217 1.244 1.105 1.000
σ(ε) 0.061 0.049 0.053 0.041 -
IR 0.503 0.517 0.517 0.401 0.131
me 1.314 1.622 1.686 0.698 2.141
btm 4.325 3.179 3.697 2.559 -0.237
mom 4.106 3.611 3.743 1.993 0.019

Table 4.2: Simple linear portfolio policy - OOS results
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Variable Numerical GD Analytical GD (pandas/numpy) Analytical SGD (PyTorch)
me 0.611 0.669 -1.762
btm 8.413 8.595 2.285
mom 7.800 7.944 4.130
Time elapsed 7.575 23.961 7.445

Table 4.3: Comparison of GD methods - estimates and speed - IS results

NumPy) and a numerical one, the difference in convergence speed seems very thin. However,
epochs with a numerical approach are performed almost three times faster. However, an
analytical SGD implementation using PyTorch seems almost as fast as the numerical one.

4.2 Long-only portfolio constraint, no transaction costs

Tables 4.4 and 4.5 present parameters obtained when using a stochastic gradient descent
and a PyTorch implementation for a long-only linear portfolio policy (respectively in-sample
and out-of-sample).

Our estimated parameters are now almost consistent in sign with the literature. Also,
one may notice the considerably reduced magnitude of the estimators (again, consistent
with the literature). One may interpret this as the ’positivity constraint’ acting de facto as
a shrinkage method.

4.3 Unconstrained weights, transaction costs

Tables 4.6 and 4.7 present parameters obtained when using a stochastic gradient descent
and a PyTorch implementation for a simple linear portfolio policy penalized with variable
transaction costs (respectively in-sample and out-of-sample). Contrary to the estimates in
the base case, a fixed number of epochs is used (rather than a precision threshold), for
computation time purposes. The bootstrap estimates of standard deviations are done in a
different way than in previous cases: instead of randomly drawing samples from the initial
dataset, time ’windows’ are drawn (i.e. samples with no holes along the t axis) so that the
time consistency of the method for computing transaction costs remains valid. Using this
method we obtain considerably less samples and our estimates for standard deviations may
be less reliable.

Looking at in-sample performance, one effectively reduces the overall turnover of the
portfolio.

Penalizing the turnover may also act as shrinkage. Indeed, implying less turnover means
being less ’sensitive’ to signals (i.e. one would need much bigger values of me, btm,mom to
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In-sample
Variable SGD BSCV Market

θ̂me -0.692 -1.277 -
σθ̂me

(0.399) (1.217) -

θ̂btm 1.206 3.215 -
σθ̂btm (0.477) (1.131) -

θ̂mom 1.710 1.416 -
σθ̂mom

(0.438) (1.213) -
|wi,t| 0.026 0.026 0.026
maxwi,t 36.998 31.250 32.578
minwi,t - - -
ΣI(wi,t < 0)/Nt - - -
Σwi,tI(wi,t < 0) - - -
Σ|wi,t+1 − wi,t| 0.261 0.208 0.083
CE 0.008 0.007 0.006
r̄ 0.208 0.202 0.155
σ(r) 0.213 0.228 0.175
SR 0.195 0.176 0.140
α 0.003 0.003 -
β 1.096 1.092 1.020
σ(ε) 0.020 0.030 0.003
IR 0.169 0.105 -0.024
me 1.023 0.376 2.193
btm 0.283 1.079 -0.242
mom 0.794 0.203 0.019

Table 4.4: Long-only linear portfolio policy - IS results
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Out-of-sample
Variable GD BSCV Market

θ̂me -0.439 0.651 -
σθ̂me

(0.070) (1.510) -

θ̂btm 0.808 2.679 -
σθ̂btm (0.107) (1.417) -

θ̂mom 1.430 3.780 -
σθ̂mom

(0.132) (1.505) -
|wi,t| 0.026 0.026 0.026
maxwi,t 37.164 31.162 32.578
minwi,t - - -
ΣI(wi,t < 0)/Nt - - -
Σwi,tI(wi,t < 0) - - -
Σ|wi,t+1 − wi,t| 0.242 0.296 0.083
CE 0.008 0.008 0.006
r̄ 0.200 0.214 0.155
σ(r) 0.205 0.224 0.175
SR 0.190 0.194 0.140
α 0.003 0.004 -
β 1.087 1.137 1.020
σ(ε) 0.016 0.022 0.003
IR 0.174 0.159 -0.024
me 1.308 0.962 2.193
btm 0.094 0.342 -0.242
mom 0.761 1.048 0.019

Table 4.5: Long-only linear portfolio policy - OOS results
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act on it and change weights, otherwise the trading costs would exceed the gross outperfor-
mance). This is directly translated into lower coefficients in absolute value.

Also, our new estimates lead to an underperforming portfolio compared to previous esti-
mates in terms of certainty equivalent, which can be puzzling. One may explain this result
by the fact that the convergence speed of the optimization algorithm when trading costs are
factored in becomes very slow and the optimization actually did not approach well enough
the ’true’ parameters.

Factoring in transaction costs considerably lengthens the training time. Achieving the
present results took 250 seconds (without transaction costs, the training time is 6 seconds).
To this long training time, one can add that computing the state-transition matrices takes
an additional minute.

Therefore, in practice one may consider not to factor in transaction costs when it comes
to fitting a model, but instead apply less computationally costly regularization methods,
that should themselves effectively reduce the turnover and transaction costs.
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In-sample
Variable SGD (penalty) GD (simple, no penalty) BSCV Market

θ̂me -0.681 0.613 -1.167 -
σθ̂me

(0.944) (0.321) (0.550) -

θ̂btm 1.457 7.799 3.160 -
σθ̂btm (0.805) (0.461) (0.924) -

θ̂mom 2.203 7.415 1.307 -
σθ̂mom

(0.641) (0.450) (0.745) -
|wi,t| 0.051 0.135 0.064 0.026
maxwi,t 84.817 20.535 77.524 32.578
minwi,t -7.540 -61.722 -9.933 -
ΣI(wi,t < 0)/Nt 0.402 0.470 0.430 -
Σwi,tI(wi,t < 0) -0.464 -2.044 -0.700 -
Σ|wi,t+1 − wi,t| 0.606 1.679 0.525 0.083
CE 0.013 0.023 0.014 0.006
r̄ 0.280 0.545 0.292 0.152
σ(r) 0.218 0.330 0.224 0.174
SR 0.296 0.419 0.281 0.143
α 0.009 0.026 0.011 -
β 1.046 1.085 1.004 1.013
σ(ε) 0.023 0.061 0.041 0.003
IR 0.376 0.421 0.261 0.031
me 1.401 1.477 0.626 2.193
btm 0.715 4.159 2.435 -0.242
mom 1.690 4.153 0.469 0.019

Table 4.6: Simple linear policy with transaction costs - IS results
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Out-of-sample
Variable SGD (penalty) GD (simple, no penalty) BSCV Market

θ̂me -0.497 -0.029 -0.925 -
σθ̂me

(0.665) (0.731) (0.780) -

θ̂btm 0.404 4.944 3.468 -
σθ̂btm (0.284) (0.882) (1.305) -

θ̂mom 0.782 5.083 2.497 -
σθ̂mom

(0.233) (1.156) (0.961) -
|wi,t| 0.031 0.101 0.072 0.026
maxwi,t 43.748 49.768 155.935 32.578
minwi,t -1.159 -217.609 -23.902 -
ΣI(wi,t < 0)/Nt 0.267 0.456 0.435 -
Σwi,tI(wi,t < 0) -0.091 -1.412 -0.854 -
Σ|wi,t+1 − wi,t| 0.252 1.279 0.761 0.083
CE 0.009 0.021 0.017 0.006
r̄ 0.199 0.437 0.338 0.152
σ(r) 0.188 0.270 0.230 0.174
SR 0.211 0.403 0.332 0.143
α 0.003 0.020 0.013 -
β 1.026 1.066 1.029 1.013
σ(ε) 0.011 0.045 0.038 0.003
IR 0.308 0.435 0.350 0.031
me 1.703 1.373 0.848 2.193
btm 0.037 2.767 2.391 -0.242
mom 0.642 3.157 1.444 0.019

Table 4.7: Simple linear policy with transaction costs - OOS results
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Chapter 5

Conclusions

Implementing Brandt, Santa-Clara and Valkanov’s strategy can meet several hurdles, espe-
cially when it comes to factoring in cases that depart from the basic (yet unrealistic) scenario
where there are no transaction costs and constraints to investing.

When it comes to optimization, it appears that gradient descent may be the best compro-
mise in terms of computation time (less costly than a naive method) and overfitting potential
(less prone to this issue than the Newton-Ralphson method).

With regards to what method one may use to compute gradients, actually using a Py-
Torch framework that automatically derives them seem to be an interesting choice. First,
it might appear as theoretically more robust than approximating the gradient between two
close points, and second, the PyTorch framework opens the path for weighting scheme spec-
ifications beyond simple, linear cases, that can be more complex than what is traditionally
used. Third, PyTorch may easily allow to test other optimization methods (such as SGD;
however, while not covered in this master thesis, it could be interesting to see how Adagrad,
Adam or RMSprop perform).

Finally, factoring in transaction costs proved extremely costly in terms of computation
time, and this yielded disappointing results. Consequently, it might be more interesting to
use other, not time-dependent regularization methods and to control for turnover ex-post.
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Appendix A

Appendix

A.1 The mean-variance framework

For a utility function U for wealth (a stochastic random variable Wt) of a given investor,
his/her investment decision is based on ”expected utility”: the objective is to maximize
E[U(Wt+1)] at any time t.

A common way of approaching this is to approximate this number by using a Taylor
expansion to the second order:

E[U(Wt+1)] ≈ U(Wt) + U ′(Wt)EWt[rp] +
U ′′(Wt)W

2
t

2
E[r2

p] (A.1)

where rp ≡ Wt+1−Wt

Wt
. Rearranging this approximation, we define a ”mean-variance”

utility for returns u, meaning that the investor only cares about expected returns and their
covariance matrix, and not about higher moments:

u(rp) ≡ E[rp] +
A

2
V[rp] (A.2)

where A ≡ −U ′′(Wt)Wt

U ′(Wt)
is a level of risk aversion. As A is deemed to be constant, we

usually assume to have constant relative risk aversion preferences (CRRA).

Since one can write its portfolio return as follows:

rp = rf + wᵀµ (A.3)

where rf denotes the risk-free rate, w the vector containing the weight on each asset, and
µ the vector containing the excess return (over the risk-free rate) of each asset, maximizing
u(rp over w yields an optimal theoretical weight vector w∗ (analytical solution of the first-
order condition):

w∗ =
1

A
Σ−1µ (A.4)

where Σ denotes the covariance matrix of the asset returns.
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A.2 The generalized method of moments

Let us remind the general principle of this method (GMM). Since we want our estimate

of θ∗ and λ∗, θ̂ and λ̂, to make m(θ̂, λ̂) as close to (0, . . . , 0) ∈ RL+T , we consider a
(weighted) norm over RL, ‖.‖W (W being the weighting matrix). We now aim at mini-
mizing θ, λ 7→ ‖m(θ, λ)‖W , or rather, for a simpler problem, θ, λ 7→ ‖m(θ, λ)‖2

W .

Here, a tough choice is to find W (note that it should be symmetric, positive-definite).
Optimally, it would be (m(θ∗, λ∗) m(θ∗, λ∗)ᵀ)−1, but of course we do not know θ∗, which we
want to estimate. There are several approaches to this issue. The first one is to start with a
trivial W , then compute a first (temporary) estimate of θ∗ and λ∗, and then recompute W
using this latter estimate, and then finally compute the final estimate for θ∗ and λ∗. This is
the ’two-step’ approach. Note that it can be iterated several times. A second approach is to
estimate θ∗, λ∗ and W jointly. A last approach, a bit specific to our case, is

A common starting matrix for the two-step approach is W = IL. Our procedure is then
as follows:

1. We numerically estimate θ̂, λ̂ ≈ arg minθ,λm(θ, λ)ᵀ m(θ, λ)

2. We compute an estimate of W , Ŵ = (m(θ̂, λ̂) m(θ̂, λ̂)ᵀ)−1

3. We numerically estimate a final version θ̄, λ̄ ≈ arg minθ,λm(θ, λ)ᵀ Ŵ m(θ, λ)

In our present case, we do not really need to implement this method to estimate our param-
eters. Instead, we already find them thanks to our previous optimization routine. However,
we can leverage the properties of GMM estimators to find an analytical formula for their
variances (Hansen, 1982 [2]). Here, we only plug-in our estimator of the parameters and
directly approach W by (m(θ̂, λ̂) m(θ̂, λ̂)ᵀ)−1.

A.3 Neural networks backpropagation and chain rule

Backpropagation is an approach to computing the gradient of a multivariate, differentiable
function at a certain data point. It mainly relies on the chain rule. Let us remind that for
differentiable functions f : Rd1 −→ Rd2 and g : Rd2 −→ R, the chain rule allows to write
the following:

∇f◦g = Jᵀ
f∇g (A.5)

If we consider f1, . . . , fk to be layers of a neural network and g a loss function, the
gradient to use in our optimization algorithm can be computed as Jᵀ

f1
. . . Jᵀ

fk
∇g. This is

called ’backpropagation’ of the gradient since we ’start’ from ∇g to successively (and in
’backward’ fashion) update it with Jacobian matrix to get the final value of the gradient we
want to compute.
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A.4 Code

The following script aims at handling the data so that it becomes exploitable.

import pandas as pd

import numpy as np

from tqdm import tqdm # For progress bars, not necessary

tqdm.pandas() # For progress bars, not necessary

# Step I: downloading data

# We start by downloading all the data we need from 3 datasets:

# 1/ ccm (Compustat-CRSP merged), that contains annual accruals

# 2/ crsp (CRSP), that contains monthly security market data

ccm = pd.read_csv('ccm.csv')

crsp = pd.read_table('crsp.txt', sep="\s+")

crsp['datadate'] = crsp.date

crsp = crsp.loc[crsp.datadate != 'date'] # We also drop all the lines that

do not actually hold data↪→

# Step II: building reliable indices (mapping of companies i and periods

t)↪→

# Constructing a t variable that handles the period count to simplify

things (and not to have to use datadate, or any other datetime

package)

↪→

↪→

# It is the 't' variable that goes from 0 to T-1

# There might be some mismatches in dates between crsp and ccm. For

instance, the last day of a same month could be different. Here we

index every month so that we bypass this problem.

↪→

↪→

datelist_crsp = pd.to_datetime(crsp['datadate'], format='%Y%m%d',

errors='ignore').unique() # We take one occurrence of every date, and

convert strings to dates at the same time

↪→

↪→

datelist_crsp.sort() # We sort our newly created dataframe (by date order)

datelist_crsp = pd.DataFrame(datelist_crsp, columns=['date'])

datelist_crsp['date'] = datelist_crsp['date'].astype(str).apply(lambda x :

x.replace('-',''))↪→

datelist_crsp = datelist_crsp.reset_index().set_index('date')

datelist_crsp.columns = ['t'] # For readability

datelist_ccm = pd.to_datetime(ccm['datadate'], format='%Y%m%d',

errors='ignore').unique() # We take one occurrence of every date, and

convert strings to dates at the same time

↪→

↪→

35



datelist_ccm.sort() # We sort our newly created dataframe (by date order)

datelist_ccm = pd.DataFrame(datelist_ccm, columns=['date'])

datelist_ccm['date'] = datelist_ccm['date'].astype(str).apply(lambda x :

x.replace('-',''))↪→

datelist_ccm = datelist_ccm.reset_index().set_index('date')

datelist_ccm.columns = ['t'] # For readability

crsp['t'] = crsp['datadate'].progress_apply(lambda date :

datelist_crsp.loc[str(date)]) # We build the 't' column for crsp↪→

ccm['t'] = ccm['datadate'].progress_apply(lambda date :

datelist_ccm.loc[str(date)]) # Same for ccm↪→

datelist_crsp.to_csv('datelist_crsp.csv') # saving, it will be of use later

datelist_ccm.to_csv('datelist_ccm.csv')

# We do not need to modify the 'LPERMCO' and 'PERMCO column that identify

companies (acts as 'i' index)↪→

# (i variable that goes from 1 to N_t)

crsp['i'] = crsp['PERMCO'].astype(str) # We make sure that every component

has the same format, and use 'LPERMNO' as 'i'↪→

ccm['i'] = ccm['LPERMCO'].astype(str)

# Step III: cleaning

# We replace '.' and other bothering letters by 0, and convert to float

format the concerned columns↪→

# We first need to define a function that will replace '.' by '0' (but

only for data points that are '.', not for those which are 'X.XX')↪→

def string_replace(x):

if x in ('.','C','S','A','T','P'):

return '0'

else:

return x

crsp['RET'] = crsp['RET'].apply(string_replace).astype(float)

crsp['DLRET'] = crsp['DLRET'].apply(string_replace).astype(float)

crsp['r'] = crsp['RET'] + crsp['DLRET']

crsp['PRC'] = crsp['PRC'].apply(string_replace).astype(float)

crsp['PRC'] = abs(crsp['PRC'])
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ccm['at'] = ccm['at'].fillna(0) # We replace NaN by 0 for the accruals

ccm['lt'] = ccm['lt'].fillna(0)

ccm['pstk'] = ccm.pstk.fillna(0)

ccm['txditc'] = ccm.txditc.fillna(0)

ccm['csho'] = ccm.csho.fillna(0)

# Step IV: retaining only interesting columns

ccm = ccm[['at','csho','lt','pstk','txditc','t','i']]

crsp = crsp[['PRC','r','SHROUT','DLRET','vwretd','t','i']]

# Step V: merging crsp and ccm (the hard part)

# Here the main problem is that we need to match yearly data (ccm) to

monthly data (crsp), according to a very specific rule (6-month

information lag)

↪→

↪→

# Our approach is the following:

# 1/ For every month t, we extract all the available information in ccm.

We make sure to respect a given information lag (here, 6 months).↪→

# By making a list while we iterate over t, we thus build a

filtration (list of dataframes)↪→

# 2/ For every month t, we extract from the filtration the latest data

available↪→

# 3/ We add back the current month t to each 'latest' dataframe, because

the old 't' index becomes outdated (corresponds to the past months!)↪→

# 4/ We concatenate everything and merge it with crsp

# All available information at time t

information_lag = 6

filtration_ccm = [ccm[ccm['t'] <= t-information_lag] for t in

tqdm(datelist_ccm['t'])] # filtration↪→

latest_ccm = [elt.groupby('i').max('t') for elt in tqdm(filtration_ccm)] #

List of latest information available (list of dataframes)↪→

latest_ccm2 = [] # At this point, the 't' column in the dataframes of

latest_ccm point towards past dates, and not the current month.↪→

# The following loop allows to add the current month and make it the new

't' column. The latest_ccm2 will hold the completed dataframes.↪→

for t, elt in tqdm(enumerate(latest_ccm)):

elt = elt.reset_index() # For conveniency

37



if elt.empty: # If there is no data, we create a new dataframe filled

with np.nan↪→

elt = pd.DataFrame([np.nan] * len(elt.columns)).T

elt.columns = ccm.columns

time = pd.DataFrame([t] * len(elt)) # We create a new column filled

with t↪→

time.columns = ['new_t']

new_elt = pd.concat([elt, time], axis=1) # We add it to our data

new_elt = new_elt.rename(columns={'t':'old_t', 'new_t':'t'}) # For

conveniency↪→

latest_ccm2.append(new_elt)

latest_ccm2 = pd.concat(latest_ccm2) # Concatenation

data = pd.merge(crsp, latest_ccm2, on=['i','t']).drop(['old_t'], axis=1) #

SUCCESSFUL MERGER!↪→

# Step VI: building r_next

# r_next is the next month returns (very useful to avoid time-consuming

queries in our optimization routine)↪→

# We split by i, and for each we compute the next period returns

dfs = [] # Destined to be the new data

for i in tqdm(data.i.unique()): # For each company

df = data[data.i == i].sort_values('t') # We extract a sorted dataframe

containing all the data that concerns it↪→

df['r_next'] = df.shift(-1)['r'] # We append to it the shifted (towards

1 month ahead) returns↪→

dfs.append(df) # We add this dataframe to the list dfs

data = pd.concat(dfs) # We concatenate everything to get a proper big

dataframe↪→

# Step VII: building factors

# Building intermediate features necessary in the computation of factors

(using the same methodology as in the paper)↪→

data['market_cap'] = data.csho * data.PRC # Number of shares outstanding

times the price per share↪→

data['book_value'] = data['at'] - data['lt'] + data.txditc - data.pstk #

Assets - liabilities + deferred taxes and investment credits -

preferred shares

↪→

↪→

# Building factors, according to the formulas in the paper

data['btm'] = np.log( 1 + ( data.book_value / data.market_cap ) )
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data['me'] = np.log( data.market_cap )

dfs = [] # mom is a bit specific since we need past returns; dfs is

destined to be the new data↪→

for i in tqdm(data.i.unique()): # For each company

df = data[data.i == i].sort_values('t') # We extract a sorted dataframe

containing all the data that concerns it↪→

df['mom'] = ( ( 1 + df.r ).shift(2).rolling( window=12 ).apply(np.prod,

raw=True) - 1) # We compute mom on this sub dataset↪→

dfs.append(df) # We add this dataframe to the list dfs

data = pd.concat(dfs) # We concatenate everything to get a proper big

dataframe↪→

# Step VIII: removing the 20% smallest firms (just like in the paper) for

each period t↪→

dfs = []

for t in tqdm(data.t.unique()):

df = data[data.t == t]

df = df[df.me > df.me.quantile(.2)]

dfs.append(df)

data = pd.concat(dfs)

# Step IX: removing negative btm securities

data = data[data.btm >= 0]

# Step X: standardization (month by month)

# We start by computing averages and standard deviations of factors for

each month↪→

averages = data.groupby('t')[['btm','me','mom']].mean()

std_devs = data.groupby('t')[['btm','me','mom']].std()

# Then we make a column for each in the main dataset

data[['btm_avg','me_avg','mom_avg']] = data.t.progress_apply( lambda date :

averages.loc[ date , : ] )↪→

data[['btm_std','me_std','mom_std']] = data.t.progress_apply( lambda date :

std_devs.loc[ date , : ] )↪→

# Then we standardize the factors

data['btm_standardized'] = ( data.btm - data.btm_avg ) / data.btm_std

data['me_standardized'] = ( data.me - data.me_avg ) / data.me_std

data['mom_standardized'] = ( data.mom - data.mom_avg ) / data.mom_std

# Step XI: building w_hat, the weight of each stock within the market

portfolio↪→
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total_market_value = data.groupby('t')['market_cap'].sum() # First we

compute the market portfolio at each date↪→

data['total_market_value'] = data.t.apply( lambda date : total_market_value[

date ] ) # Then we assign to each line the corresponding value of the

market at each date

↪→

↪→

data['w_hat'] = data.market_cap / data.total_market_value # Finally, we

divide the market capitalization by the total market value to get

w_hat

↪→

↪→

# Step XII: building w_equal, the weight of each stock within the

equal-weighted portfolio↪→

data['ones'] = np.ones(len(data)) # First we create a column only composed

of ones (it therefore counts one for each company that exists at each

date)

↪→

↪→

number_of_firms = data.groupby('t')['ones'].sum() # We then count the

number of existing firms at each date↪→

data['N'] = data.t.apply( lambda date : number_of_firms[ date ] ) # We

assign it to each line of the main dataframe (just like before)↪→

data['w_equal'] = data.ones / data.N # We divide the 'ones' column by this

newly created feature to get the desired equal-weighting↪→

# Step XIII: we create Tilde{x}, which simplies the computations (but not

by much)↪→

data['me_tilde'] = data['me_standardized'] / data['N']

data['btm_tilde'] = data['btm_standardized'] / data['N']

data['mom_tilde'] = data['mom_standardized'] / data['N']

# Step XIII: we create Tilde{x}, which simplies the computations (but not

by much)↪→

data['me_tilde'] = data['me_standardized'] / data['N']

data['btm_tilde'] = data['btm_standardized'] / data['N']

data['mom_tilde'] = data['mom_standardized'] / data['N']

data_standard_market_benchmark =

data[['r','r_next','me_standardized','btm_standardized','mom_standardized','w_hat','N','i','t']]↪→

data_standard_market_benchmark =

data_standard_market_benchmark.rename(columns={↪→

'me_standardized':'me',

'btm_standardized':'btm',

'mom_standardized':'mom',

'w_hat':'w_bar'
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})

data_tilde_market_benchmark =

data[['r','r_next','me_tilde','btm_tilde','mom_tilde','w_hat','N','i','t']]↪→

data_tilde_market_benchmark = data_tilde_market_benchmark.rename(columns={

'me_tilde':'me',

'btm_tilde':'btm',

'mom_tilde':'mom',

'w_hat':'w_bar'

})

# Step XIV: saving our tweaked dataset, at last!

data.to_csv('data_viz.csv') # We keep the big dataframe if we ever want to

do some visualization↪→

data_standard_market_benchmark.to_csv('data_standard_market_benchmark.csv')

data_tilde_market_benchmark.to_csv('data_tilde_market_benchmark.csv')

The following script aims at sorting the whole dataset according to the ’birth date’ (date
of appearance) of each security.

import pandas as pd

from tqdm import tqdm

df_name = 'data_tilde_market_benchmark.csv'

data = pd.read_csv(df_name, index_col=0).dropna()

birth_dates = dict({(i,data[data.i == i].t.min()) for i in

tqdm(data.i.unique())})↪→

data['birth_date'] = data.i.apply(lambda x : birth_dates[x])

data = data.sort_values(by=['birth_date'])

data.to_csv(df_name)

The following script computes the variable (and constant) transaction costs for each
security at each point in time (when it exists).

"""This script aims at computing transaction costs for each stock at each

month."""↪→

import pandas as pd

#Picking the right timeframe

df_name = 'data_tilde_market_benchmark.csv'

data = pd.read_csv(df_name, index_col=0).dropna()

# Normalized me computation

data['normalized_me'] = (data.me - data.me.min()) / (data.me.max() -

data.me.min())↪→
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# z computation

data['z'] = 0.006 - (0.0025 * data['normalized_me'])

# Defining t1 and t2

datelist = pd.read_csv('datelist_ccm.csv', index_col=0)

t1 = datelist.loc[19740131].values[0]

t2 = datelist.iloc[-2].values[0]

# b computation

T_ratio = data[data.t == t1].z.mean() / data[data.t == t2].z.mean() / 4

b = (T_ratio - 1) / (t2 - t1)

# T_t1 computation

temp1 = pd.Series([(1 + ((t - t1) * b))/0.005 for t in data.t.unique()])

temp2 = data.groupby('t')['z'].mean()

T_t1 = temp1.values.T @ temp2.values / len(data.t.unique())

# T_t computation

data['T_t'] = data.t.apply(lambda t: T_t1 + ((t-t1) * b * T_t1))

# Variable transaction cost computation

data['variable_c'] = data['T_t'] * data['z']

# Constant transaction cost assignment

data['constant_c'] = 0.005

data.to_csv(df_name)

The following script defines the m function, the Jacobian matrix and the Hessian matrix
of our base case.

# For tilde dataset

import pandas as pd

import numpy as np

import copy

data = pd.read_csv('data_tilde_market_benchmark.csv', index_col=0).dropna()

# Defining u, u_der, u_hes

def u(theta, data=data, gamma=5):

df = pd.DataFrame(
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data[['w_bar']].values + data[['me','btm','mom']].values @ theta,

columns = ['r_next'] * theta.shape[1],

index = data.index

) * data[['r_next']]

df['t'] = data['t']

return ( ( 1 + df.groupby('t').sum() )**( 1 - gamma ) / ( 1 - gamma )

).mean().values↪→

def crra_prime(r, gamma=5):

result = ( 1 + r )**( -gamma )

return result

def r_T_dot_x(d):

return d['r_next'].T @ d[['me','btm','mom']]

def u_der(theta, data=data, gamma=5):

'''Gradient of the objective function; only supports one theta array

at a time'''↪→

df = pd.DataFrame(

data[['w_bar']].values + data[['me','btm','mom']].values @ theta,

columns = ['r_next'],

index = data.index

) * data[['r_next']]

df.columns = ['contribs']

df[['me','btm','mom','t','r_next']] =

data[['me','btm','mom','t','r_next']]↪→

data_grouped = df.groupby('t')

u_p = data_grouped[['contribs']].sum().apply(crra_prime,

gamma=gamma).values↪→

right_factor =

data_grouped[['me','btm','mom','r_next']].apply(r_T_dot_x)↪→

return (u_p * right_factor).mean().values

43



def crra_second(r, gamma=5):

result = ( 1 + r )**( -1-gamma ) * ( -gamma )

return result

def u_hes(theta, data=data, gamma=5):

'''Gradient of the objective function; only supports one theta array

at a time'''↪→

T = len(data.t.unique())

df = pd.DataFrame(

data[['w_bar']].values + data[['me','btm','mom']].values @ theta,

columns = ['r_next'],

index = data.index

) * data[['r_next']]

df.columns = ['contribs']

df[['me','btm','mom','t','r_next']] =

data[['me','btm','mom','t','r_next']]↪→

data_grouped = df.groupby('t')

u_s = data_grouped[['contribs']].sum().apply(crra_second,

gamma=gamma).values↪→

right_factor =

data_grouped[['me','btm','mom','r_next']].apply(r_T_dot_x)↪→

left_factor = u_s * copy.deepcopy(right_factor)

result = left_factor.T @ right_factor

return result.values / T

The following script defines 3 different optimization routine (and a bootstrap function)
for our base case, as well as evaluation functions.

import pandas as pd

import numpy as np

from functions import *

from tqdm import tqdm

from statsmodels.regression.linear_model import OLS

from statsmodels.tools.tools import add_constant

import copy

# Naive: mini batch simulation on u
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def naive(data, gamma=5, batch_size=10, batch_num=1000):

res_theta, res_u = [], []

for i in tqdm(range(batch_num)):

theta_batch = ( np.random.rand(3,batch_size) - 0.25 ) * 20 # Check

if naive estimator yields same result↪→

utilities = u(theta_batch, data=data, gamma=gamma)

res_theta.append(pd.DataFrame(theta_batch))

res_u.append(pd.DataFrame(utilities))

res = pd.concat(res_theta, axis=1).T.reset_index()

res['utility'] = pd.concat(res_u).reset_index()[0]

theta_naive = res.loc[res.idxmax(0)['utility']][[0,1,2]].values #

Results;↪→

return theta_naive

# Simple GD

def simple_GD(data, gamma=5, eps=1e-6, eta=10, iter_lim=20):

theta_iter = np.zeros((3,1))

grad = copy.deepcopy(u_der(theta_iter, data=data, gamma=gamma))

loss = grad @ grad.T

counter = 0

while loss > eps:

if counter > iter_lim:

print(f"Did not converge; stopped at iteration {counter}")

break

grad = copy.deepcopy(u_der(theta_iter, data=data, gamma=gamma)) #

deepcopy needed↪→

theta_iter += (eta * grad).reshape(3,1) # Adding because we want to

maximize↪→

loss = grad @ grad.T

counter += 1

theta_gd = copy.deepcopy(theta_iter)

return theta_gd
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# Newton-Ralphson

def newton_ralphson(data, gamma=5, eps=1e-10, iter_lim=20):

theta_iter = np.zeros((3,1))

grad = copy.deepcopy(u_der(theta_iter, data=data, gamma=gamma))

loss = grad @ grad.T

hess = copy.deepcopy(u_hes(theta_iter, data=data, gamma=gamma))

counter=0

while loss > eps:

if counter > iter_lim:

print(f"Did not converge; stopped at iteration {counter}")

break

grad = copy.deepcopy(u_der(theta_iter, data=data, gamma=gamma))

hess = copy.deepcopy(u_hes(theta_iter, data=data, gamma=gamma))

theta_iter -= (np.linalg.inv(hess) @ grad).reshape(3,1)

loss = grad @ grad.T

counter+=1

theta_nr = copy.deepcopy(theta_iter)

return theta_nr

# Bootstrap

def bootstrap(samples, inference_method, **kwargs):

thetas_bootstrap = [

inference_method(

sample,

**kwargs

) for sample in tqdm(samples)

]

return pd.concat([pd.DataFrame(elt) for elt in thetas_bootstrap],

axis=1).T↪→

# Evaluation metrics once estimation is done

def evaluation(theta, data=data, gamma=5):

df = copy.deepcopy(data)

df['weights'] = df[['w_bar']].values + df[['me','btm','mom']].values @

theta↪→
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dfs = [] # Destined to be the new data

for i in tqdm(df.i.unique()): # For each company

df_temp = df[df.i == i].sort_values('t') # We extract a sorted

dataframe containing all the data that concerns it↪→

df_temp['w_next'] = df_temp.shift(-1)['weights'] # We append to it

the shifted (towards 1 month ahead) returns↪→

dfs.append(df_temp) # We add this dataframe to the list dfs

df = pd.concat(dfs) # We concatenate everything to get a proper big

dataframe↪→

df['is_short'] = (df.weights < 0)*1

df['short_weights'] = df['is_short'] * df['weights']

df['trade'] = df['w_next'] - df['weights']

df['absolute_trades'] = abs(df['trade'])

df['contributions'] = df['weights'] * df['r_next']

gross_rets = 1 + df.groupby('t')['contributions'].sum()

annualized_gross_rets =

gross_rets.rolling(12).apply(np.prod).dropna().iloc[::12]↪→

rf = pd.read_csv('rf.csv',

index_col=0).set_index('t').loc[gross_rets.index][['rf']]↪→

excess_returns = gross_rets - 1 - rf['rf']

df['market_contributions'] = df['w_bar'] * df['r_next']

market_returns = df.groupby('t')['market_contributions'].sum()

market_excess_returns = market_returns - rf['rf']

model = OLS(excess_returns, add_constant(market_excess_returns))

reg_res = model.fit()

df['me_portfolio'] = df['N'] * df['weights'] * df['me']

df['btm_portfolio'] = df['N'] * df['weights'] * df['btm']

df['mom_portfolio'] = df['N'] * df['weights'] * df['mom']

results = {

'average absolute weight' : abs(df['weights']).mean() * 100,

'maximum weight' : df['weights'].max() * 100,

'minimum weight' : df['weights'].min() * 100,

'average proportion of shorted stocks' :

df.groupby('t')['is_short'].mean().mean(),↪→

'average sum of shorted stocks' :

df.groupby('t')['short_weights'].sum().mean(),↪→
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'average turnover' :

df.groupby('t')['absolute_trades'].sum().mean(),↪→

'certainty equivalent':

((gross_rets**(1-gamma)).mean())**(1/(1-gamma))-1,↪→

'average return' : annualized_gross_rets.mean() - 1,

'standard deviation of returns' : annualized_gross_rets.std(),

'Sharpe ratio' : excess_returns.mean() / excess_returns.std(),

'alpha' : reg_res.params['const'],

'beta' : reg_res.params[0],

'sigma(eps)' : reg_res.resid.std(),

'information ratio' : reg_res.params['const'] / reg_res.resid.std(),

'me' : df.groupby('t')['me_portfolio'].sum().mean(),

'btm' : df.groupby('t')['btm_portfolio'].sum().mean(),

'mom' : df.groupby('t')['mom_portfolio'].sum().mean()

}

return results

def evaluation_pos_constraint(theta, data=data, gamma=5):

df = copy.deepcopy(data)

df['weights'] = df[['w_bar']].values + df[['me','btm','mom']].values @

theta↪→

df['weights'] = (df['weights'] > 0) * df['weights']

df['weights'] = df.groupby('t')['weights'].apply(lambda x: x/x.sum())

dfs = [] # Destined to be the new data

for i in tqdm(df.i.unique()): # For each company

df_temp = df[df.i == i].sort_values('t') # We extract a sorted

dataframe containing all the data that concerns it↪→

df_temp['w_next'] = df_temp.shift(-1)['weights'] # We append to it

the shifted (towards 1 month ahead) returns↪→

dfs.append(df_temp) # We add this dataframe to the list dfs

df = pd.concat(dfs) # We concatenate everything to get a proper big

dataframe↪→

df['is_short'] = (df.weights < 0)*1

df['short_weights'] = df['is_short'] * df['weights']

df['trade'] = df['w_next'] - df['weights']

df['absolute_trades'] = abs(df['trade'])
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df['contributions'] = df['weights'] * df['r_next']

gross_rets = 1 + df.groupby('t')['contributions'].sum()

annualized_gross_rets =

gross_rets.rolling(12).apply(np.prod).dropna().iloc[::12]↪→

rf = pd.read_csv('rf.csv',

index_col=0).set_index('t').loc[gross_rets.index][['rf']]↪→

excess_returns = gross_rets - 1 - rf['rf']

df['market_contributions'] = df['w_bar'] * df['r_next']

market_returns = df.groupby('t')['market_contributions'].sum()

market_excess_returns = market_returns - rf['rf']

model = OLS(excess_returns, add_constant(market_excess_returns))

reg_res = model.fit()

df['me_portfolio'] = df['N'] * df['weights'] * df['me']

df['btm_portfolio'] = df['N'] * df['weights'] * df['btm']

df['mom_portfolio'] = df['N'] * df['weights'] * df['mom']

results = {

'average absolute weight' : abs(df['weights']).mean() * 100,

'maximum weight' : df['weights'].max() * 100,

'minimum weight' : df['weights'].min() * 100,

'average proportion of shorted stocks' :

df.groupby('t')['is_short'].mean().mean(),↪→

'average sum of shorted stocks' :

df.groupby('t')['short_weights'].sum().mean(),↪→

'average turnover' :

df.groupby('t')['absolute_trades'].sum().mean(),↪→

'certainty equivalent':

((gross_rets**(1-gamma)).mean())**(1/(1-gamma))-1,↪→

'average return' : annualized_gross_rets.mean() - 1,

'standard deviation of returns' : annualized_gross_rets.std(),

'Sharpe ratio' : excess_returns.mean() / excess_returns.std(),

'alpha' : reg_res.params['const'],

'beta' : reg_res.params[0],

'sigma(eps)' : reg_res.resid.std(),

'information ratio' : reg_res.params['const'] / reg_res.resid.std(),

'me' : df.groupby('t')['me_portfolio'].sum().mean(),

'btm' : df.groupby('t')['btm_portfolio'].sum().mean(),

'mom' : df.groupby('t')['mom_portfolio'].sum().mean()

}
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return results

def evaluation_tc(theta, data=data, gamma=5):

df = copy.deepcopy(data)

df['weights'] = df[['w_bar']].values + df[['me','btm','mom']].values @

theta↪→

df['weights'] = df.groupby('t')['weights'].apply(lambda x: x/x.sum())

dfs = [] # Destined to be the new data

for i in tqdm(df.i.unique()): # For each company

df_temp = df[df.i == i].sort_values('t') # We extract a sorted

dataframe containing all the data that concerns it↪→

df_temp['w_next'] = df_temp.shift(-1)['weights'] # We append to it

the shifted (towards 1 month ahead) returns↪→

dfs.append(df_temp) # We add this dataframe to the list dfs

df = pd.concat(dfs) # We concatenate everything to get a proper big

dataframe↪→

df['is_short'] = (df.weights < 0)*1

df['short_weights'] = df['is_short'] * df['weights']

df['trade'] = df['w_next'] - df['weights']

df['absolute_trades'] = abs(df['trade'])

df['contributions'] = df['weights'] * df['r_next'] -

df['absolute_trades'] * df['variable_c'] # Here we define

contributions net of transaction costs

↪→

↪→

gross_rets = 1 + df.groupby('t')['contributions'].sum()

annualized_gross_rets =

gross_rets.rolling(12).apply(np.prod).dropna().iloc[::12]↪→

rf = pd.read_csv('rf.csv',

index_col=0).set_index('t').loc[gross_rets.index][['rf']]↪→

excess_returns = gross_rets - 1 - rf['rf']

df['market_contributions'] = df['w_bar'] * df['r_next'] # Here we do

not factor in the transaction costs (as a result, implementing a

tracker strategy will not be totally correlated to the market

performance)

↪→

↪→

↪→

market_returns = df.groupby('t')['market_contributions'].sum()

market_excess_returns = market_returns - rf['rf']

model = OLS(excess_returns, add_constant(market_excess_returns))
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reg_res = model.fit()

df['me_portfolio'] = df['N'] * df['weights'] * df['me']

df['btm_portfolio'] = df['N'] * df['weights'] * df['btm']

df['mom_portfolio'] = df['N'] * df['weights'] * df['mom']

results = {

'average absolute weight' : abs(df['weights']).mean() * 100,

'maximum weight' : df['weights'].max() * 100,

'minimum weight' : df['weights'].min() * 100,

'average proportion of shorted stocks' :

df.groupby('t')['is_short'].mean().mean(),↪→

'average sum of shorted stocks' :

df.groupby('t')['short_weights'].sum().mean(),↪→

'average turnover' :

df.groupby('t')['absolute_trades'].sum().mean(),↪→

'certainty equivalent':

((gross_rets**(1-gamma)).mean())**(1/(1-gamma))-1,↪→

'average return' : annualized_gross_rets.mean() - 1,

'standard deviation of returns' : annualized_gross_rets.std(),

'Sharpe ratio' : excess_returns.mean() / excess_returns.std(),

'alpha' : reg_res.params['const'],

'beta' : reg_res.params[0],

'sigma(eps)' : reg_res.resid.std(),

'information ratio' : reg_res.params['const'] / reg_res.resid.std(),

'me' : df.groupby('t')['me_portfolio'].sum().mean(),

'btm' : df.groupby('t')['btm_portfolio'].sum().mean(),

'mom' : df.groupby('t')['mom_portfolio'].sum().mean()

}

return results

The following script defines the models and optimization routines under the PyTorch
framework for our base case, long-only case, and transaction costs case.

import pandas as pd

import torch, copy

import torch.nn as nn

import torch.nn.functional as F

import numpy as np

from tqdm import tqdm

class UnconstrainedLinearModel(nn.Module):
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def __init__(self, K):

super(UnconstrainedLinearModel, self).__init__()

self.theta = nn.Parameter(torch.zeros(K, 1).double())

def forward(self, x, w_bar):

w = (torch.nan_to_num(x) @ self.theta) + w_bar

w = w / w.sum()

return w

class PositiveWeightsLinearModel(nn.Module):

def __init__(self, K):

super(PositiveWeightsLinearModel, self).__init__()

self.theta = nn.Parameter(torch.zeros(K, 1).double())

self.activation = nn.ReLU() # The only change

def forward(self, x, w_bar):

w = (torch.nan_to_num(x) @ self.theta) + w_bar

w = self.activation(w) # The only change

w = w / w.sum()

return w

def negU(w, r_next, transaction_costs=0, gamma=5):

'''Negative utility, that we will use as a loss function'''

r_p = w.T @ torch.nan_to_num(r_next)

r_p = r_p - transaction_costs

return (r_p + 1)**(1-gamma) / (gamma-1)

def dataloader_converter(data, compute_state_transition=True):

'''Returns a list of exploitable data, from t = 0 to T-1'''

sorted_t = data.sort_values(by=['t']).t.unique()

if compute_state_transition:

# Computing state-transition matrices

# Initializing

firstDataSlice = data[data.t == data.t.min()]

M = [torch.zeros(len(firstDataSlice), len(firstDataSlice))] #

setting M0↪→

# Looping
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for t in tqdm(sorted_t[1:-1]):

dataPrev = data[data.t == t-1].reset_index()

dataNow = data[data.t == t]

deaths = [elt for elt in dataPrev.i.values if elt not in

dataNow.i.values]↪→

to_kill = dataPrev[dataPrev.i.isin(deaths)].index

M_t = np.delete(np.identity(len(dataPrev)), to_kill, 0)

zeros_to_add = len(to_kill) + len(dataNow) - len(dataPrev)

zero_matrix = np.zeros((zeros_to_add, len(dataPrev)))

M_t = np.vstack((M_t, zero_matrix))

M.append(torch.tensor(M_t))

# Indexing

M_indexed = dict(zip(sorted_t, M))

else:

M = torch.zeros(len(sorted_t))

M_indexed = dict(zip(sorted_t, M))

return [{

'x': torch.tensor(data[data.t == t][['me','btm','mom']].values),

'w_bar': torch.tensor(data[data.t == t][['w_bar']].values),

'r_next': torch.tensor(data[data.t == t][['r_next']].values),

'r' : torch.tensor(data[data.t == t][['r']].values),

'variable_c': torch.tensor(data[data.t ==

t][['variable_c']].values),↪→

'constant_c': torch.tensor(data[data.t ==

t][['constant_c']].values),↪→

'M': M_indexed[t].double()

} for t in tqdm(sorted_t[:-1])]

def inference(model, data, gamma=5, dataloader=None, epoch_num=10, lr=0.1,

is_me_btm_mom=True):↪→

optimizer = torch.optim.SGD(model.parameters(), lr=lr)

if dataloader is None:

dataloader = dataloader_converter(data,

compute_state_transition=False) # May take some time↪→

for _ in tqdm(range(epoch_num)):

for d in dataloader:

x, w_bar, r_next = d['x'], d['w_bar'], d['r_next']
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w = model(x, w_bar)

loss = negU(w, r_next, gamma=gamma)

model.zero_grad()

loss.backward()

optimizer.step()

if is_me_btm_mom:

params =

copy.deepcopy(pd.DataFrame(nn.utils.parameters_to_vector(model.parameters()).detach().numpy(),

index=['me','btm','mom']))

↪→

↪→

else:

params =

copy.deepcopy(nn.utils.parameters_to_vector(model.parameters()).detach().numpy())↪→

return params

def inference_with_transaction_costs(model, data, dataloader = None,

cost_type = 'variable_c', gamma=5, epoch_num=50,lr=0.05,

is_me_btm_mom=True):

↪→

↪→

optimizer = torch.optim.SGD(model.parameters(), lr=lr)

if dataloader is None:

dataloader = dataloader_converter(data) # May take some time

for _ in tqdm(range(epoch_num)):

# Doing the first step

d = dataloader[0]

r_next = d['r_next']

hold_w = torch.zeros_like(r_next).double()

x, w_bar, r_next, c, M = d['x'], d['w_bar'], d['r_next'],

d['variable_c'], d['M'] # We then load tha values of x_t,

r_t+1, w_bar_t, and the matrix M_t

↪→

↪→

w = model(x, w_bar) # We compute the weights

transaction_costs = c.T @ abs(w - hold_w) # No M at first

loss = negU(w, r_next, transaction_costs, gamma=5)

for d in dataloader[1:-1]: # For all t from 0 to T-1

hold_w = w * (1 + r_next) / (1 + w.T @ r_next) # We need to

compute the hold portfolio before we update the values of

w and r_next

↪→

↪→
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x, w_bar, r_next, c, M = d['x'], d['w_bar'], d['r_next'],

d['variable_c'], d['M'] # We then load tha values of x_t,

r_t+1, w_bar_t, and the matrix M_t

↪→

↪→

w = model(x, w_bar) # We compute the weights

transaction_costs = c.T @ abs(w - M @ hold_w) #

loss = loss + negU(w, r_next, transaction_costs, gamma=5) # We

add the instantaneous 'loss' (i.e. negative utility, -h)

to the overall loss (-H)

↪→

↪→

model.zero_grad() # Resets the jacobian matrix of the model

loss.backward(retain_graph=True) # Computes the gradient of the

loss ; need to retain the graph so that intermediate values

are kept (w_t-1 for instance)

↪→

↪→

optimizer.step() # Performs the optimization algorithm step, i.e.

theta <- theta - eta * gradient↪→

if is_me_btm_mom:

params =

copy.deepcopy(pd.DataFrame(nn.utils.parameters_to_vector(model.parameters()).detach().numpy(),

index=['me','btm','mom']))

↪→

↪→

else:

params =

copy.deepcopy(nn.utils.parameters_to_vector(model.parameters()).detach().numpy())↪→

return params

def bootstrap(model, data, sample_size=10000, sample_num=1000, **kwargs):

sampling = [data.sample(sample_size) for i in range(sample_num)]

thetas = [

inference(model, sample, **kwargs) for sample in tqdm(sampling)

]

return pd.concat([pd.DataFrame(elt) for elt in thetas], axis=1).T

The following scripts compute and store as csv files the inferred parameters for all our
cases (as well as their standard deviations).

import pandas as pd

from functions import *

from estimation import *

data = pd.read_csv('data_tilde_market_benchmark.csv', index_col=0).dropna()

# Hyperparameters for naive estimation
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kw_naive = {

'gamma':5,

'batch_size':10,

'batch_num':100

}

# Hyperparameters for GD

kw_gd = {

'gamma':5,

'eps':1e-8,

'eta':100,

'iter_lim':100

}

# Hyperparameters for NR

kw_nr = {

'gamma':5,

'eps':1e-10,

'iter_lim':10

}

# Estimates

theta_naive = naive(data, **kw_naive)

theta_gd = simple_GD(data, **kw_gd)

theta_nr = newton_ralphson(data, **kw_nr)

estimates = pd.concat([pd.DataFrame(elt.reshape(1,3)) for elt in

(theta_naive, theta_gd, theta_nr)])↪→

estimates.columns = ('me','btm','mom')

estimates.index = ('naive','simple_GD','newton_ralphson')

estimates.to_csv('estimates_IS.csv')

# Bootstrapped standard deviations

# Sampling once and for all

samples = [data.sample(frac=0.20) for i in range(100)] # 40 minutes

# Estimates of standard deviations

std_naive = bootstrap(samples, naive, **kw_naive).std()

std_gd = bootstrap(samples, simple_GD, **kw_gd).std()
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std_nr = bootstrap(samples, newton_ralphson, **kw_nr).std()

stds = pd.concat([std_naive, std_gd, std_nr], axis=1).T

stds.columns = ('std_me','std_btm','std_mom')

stds.index = ('naive','simple_GD','newton_ralphson')

stds.to_csv('standard_deviations_IS.csv')

import pandas as pd

from functions import *

from estimation import *

data = pd.read_csv('data_tilde_market_benchmark.csv', index_col=0).dropna()

datelist = pd.read_csv('datelist.csv', index_col=0) # Loading list of dates

to select the right index↪→

stop_date = 19740131 # Defining a stop date to limit the training set

stop_t = datelist.loc[stop_date].values[0] # Determining the right index in

the list↪→

data = data[data.t < stop_t] # Refocusing the dataset

# Hyperparameters for naive estimation

kw_naive = {

'gamma':5,

'batch_size':10,

'batch_num':100

}

# Hyperparameters for GD

kw_gd = {

'gamma':5,

'eps':1e-8,

'eta':100,

'iter_lim':100

}

# Hyperparameters for NR

kw_nr = {

'gamma':5,

'eps':1e-10,

'iter_lim':10

}

# Estimates
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theta_naive = naive(data, **kw_naive)

theta_gd = simple_GD(data, **kw_gd)

theta_nr = newton_ralphson(data, **kw_nr)

estimates = pd.concat([pd.DataFrame(elt.reshape(1,3)) for elt in

(theta_naive, theta_gd, theta_nr)])↪→

estimates.columns = ('me','btm','mom')

estimates.index = ('naive','simple_GD','newton_ralphson')

estimates.to_csv('estimates_OOS.csv')

# Bootstrapped standard deviations

# Sampling once and for all

samples = [data.sample(frac=0.20) for i in range(100)] # 40 minutes

# Estimates of standard deviations

std_naive = bootstrap(samples, naive, **kw_naive).std()

std_gd = bootstrap(samples, simple_GD, **kw_gd).std()

std_nr = bootstrap(samples, newton_ralphson, **kw_nr).std()

stds = pd.concat([std_naive, std_gd, std_nr], axis=1).T

stds.columns = ('std_me','std_btm','std_mom')

stds.index = ('naive','simple_GD','newton_ralphson')

stds.to_csv('standard_deviations_OOS.csv')

from graph_representation_functions import *

import pandas as pd

import copy

data = pd.read_csv('data_tilde_market_benchmark.csv', index_col=0)

model = PositiveWeightsLinearModel(3)

thetas_bootstrap = bootstrap(model, data, sample_size=100000,

sample_num=1000)↪→

stds = pd.DataFrame(thetas_bootstrap.std()).T

stds.index = ['positive_constraint']

stds.to_csv('standard_deviations_pos_constraint_IS.csv')

theta_hat = inference(model, data).T
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theta_hat.index = ['positive_constraint']

theta_hat.to_csv('estimate_pos_constraint_IS.csv')

from graph_representation_functions import *

import pandas as pd

data = pd.read_csv('data_tilde_market_benchmark.csv', index_col=0)

datelist = pd.read_csv('datelist.csv', index_col=0) # Loading list of dates

to select the right index↪→

stop_date = 19740131 # Defining a stop date to limit the training set

stop_t = datelist.loc[stop_date].values[0] # Determining the right index in

the list↪→

data = data[data.t < stop_t] # Refocusing the dataset

model = PositiveWeightsLinearModel(3)

thetas_bootstrap = bootstrap(model, data, sample_size=100000,

sample_num=1000)↪→

stds = pd.DataFrame(thetas_bootstrap.std()).T

stds.index = ['positive_constraint']

stds.to_csv('standard_deviations_pos_constraint_OOS.csv')

theta_hat = inference(model, data).T

theta_hat.index = ['positive_constraint']

theta_hat.to_csv('estimate_pos_constraint_OOS.csv')

# Step I: imports

import torch

import pandas as pd

import numpy as np

from graph_representation_functions import *

from tqdm import tqdm

data = pd.read_csv('data_tilde_market_benchmark.csv', index_col=0)

# Step II: instanciate dataloader

dataloader = dataloader_converter(data) # May crash

# Step III: estimate unconstrained with TC

L = 3

model = UnconstrainedLinearModel(L)

params = inference_with_transaction_costs(model, data,

dataloader=dataloader, epoch_num=20, lr=0.3)↪→

59



params.columns = ['transaction_costs']

params.T.to_csv('estimates_transaction_costs_IS.csv')

# Step IV: bootstrapping with tc

L=3

sample_size = 100

sample_number = len(dataloader) - sample_size - 1

bootstrap_estimates = []

for t in tqdm(range(sample_number)):

model=UnconstrainedLinearModel(L)

temp = inference_with_transaction_costs(model, data,

dataloader=dataloader[t:t+sample_size], epoch_num=20, lr=1)↪→

bootstrap_estimates.append(temp)

std_IS_tc = pd.DataFrame(pd.concat(bootstrap_estimates,

axis=1).std(axis=1)).T↪→

std_IS_tc.index = ['transaction_costs']

std_IS_tc.to_csv('standard_deviations_transaction_costs_IS.csv')

# Step I: imports

import torch

import pandas as pd

import numpy as np

from graph_representation_functions import *

from tqdm import tqdm

df_name = 'data_tilde_market_benchmark.csv'

data = pd.read_csv(df_name, index_col=0).dropna()

datelist = pd.read_csv('datelist.csv', index_col=0) # Loading list of dates

to select the right index↪→

stop_date = 19740131 # Defining a stop date to limit the training set

stop_t = datelist.loc[stop_date].values[0] # Determining the right index in

the list↪→

data = data[data.t < stop_t] # Refocusing the dataset

# Step II: instanciate dataloader

dataloader = dataloader_converter(data) # May crash

# Step III: estimate unconstrained with TC

L = 3

model = UnconstrainedLinearModel(L)
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params = inference_with_transaction_costs(model, data,

dataloader=dataloader, epoch_num=20, lr=0.3)↪→

params.columns = ['transaction_costs']

params.T.to_csv('estimates_transaction_costs_OOS.csv')

# Step IV: bootstrapping with tc

L=3

sample_size = 50 # We reduce the sample size

sample_number = len(dataloader) - sample_size - 1

bootstrap_estimates = []

for t in tqdm(range(sample_number)):

model=UnconstrainedLinearModel(L)

temp = inference_with_transaction_costs(model, data,

dataloader=dataloader[t:t+sample_size], epoch_num=20, lr=1)↪→

bootstrap_estimates.append(temp)

std_OOS_tc = pd.DataFrame(pd.concat(bootstrap_estimates,

axis=1).std(axis=1)).T↪→

std_OOS_tc.index = ['transaction_costs']

std_OOS_tc.to_csv('standard_deviations_transaction_costs_OOS.csv')

The following script evaluates the portfolio we build in each of these cases, according to
a number of metrics.

"""This script aims at providing some evaluation metrics to different

thetas estimates."""↪→

import pandas as pd

from estimation import evaluation, evaluation_pos_constraint, evaluation_tc

'''Picking the right timeframe'''

data = pd.read_csv('data_tilde_market_benchmark.csv', index_col=0).dropna()

datelist = pd.read_csv('datelist.csv', index_col=0) # Loading list of dates

to select the right index↪→

start_date = 19740131 # Defining a start date to limit the training set

start_t = datelist.loc[start_date].values[0] # Determining the right index

in the list↪→

data = data[data.t >= start_t] # Refocusing the dataset

'''Loading theta estimates'''

estimates_IS = pd.read_csv('estimates_IS.csv', index_col=0)

estimates_IS.loc['paper'] = (-1.451, 3.606, 1.772)
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estimates_IS.loc['market'] = (0, 0, 0)

estimates_OOS = pd.read_csv('estimates_OOS.csv', index_col=0)

estimates_OOS.loc['paper'] = (-1.124, 3.611, 3.057)

estimates_OOS.loc['market'] = (0, 0, 0)

estimates_IS_pos = pd.read_csv('estimate_pos_constraint_IS.csv',

index_col=0)↪→

estimates_IS_pos.loc['paper'] = (-1.277, 3.215, 1.416)

estimates_IS_pos.loc['market'] = (0, 0, 0)

estimates_OOS_pos = pd.read_csv('estimate_pos_constraint_OOS.csv',

index_col=0)↪→

estimates_OOS_pos.loc['paper'] = (0.651, 2.679, 3.780)

estimates_OOS_pos.loc['market'] = (0, 0, 0)

estimates_IS_tc = pd.read_csv('estimates_transaction_costs_IS.csv',

index_col=0)↪→

estimates_IS_tc.loc['no_penalty'] = estimates_IS.loc['simple_GD']

estimates_IS_tc.loc['paper'] = (-1.167, 3.160, 1.307)

estimates_IS_tc.loc['market'] = (0, 0, 0)

estimates_OOS_tc = pd.read_csv('estimates_transaction_costs_OOS.csv',

index_col=0)↪→

estimates_OOS_tc.loc['no_penalty'] = estimates_OOS.loc['simple_GD']

estimates_OOS_tc.loc['paper'] = (-0.925, 3.468, 2.497)

estimates_OOS_tc.loc['market'] = (0, 0, 0)

'''Loading theta standard deviations'''

std_IS = pd.read_csv('standard_deviations_IS.csv', index_col=0)

std_IS.loc['paper'] = (0.548, 0.921, 0.743)

std_IS.loc['market'] = (0, 0, 0)

std_OOS = pd.read_csv('standard_deviations_OOS.csv', index_col=0)

std_OOS.loc['paper'] = (0.709, 1.110, 0.914)

std_OOS.loc['market'] = (0, 0, 0)

std_IS_pos = pd.read_csv('standard_deviations_pos_constraint_IS.csv',

index_col=0)↪→

std_IS_pos.loc['paper'] = (1.217, 1.131, 1.213)

std_IS_pos.loc['market'] = (0, 0, 0)

std_OOS_pos = pd.read_csv('standard_deviations_pos_constraint_OOS.csv',

index_col=0)↪→

std_OOS_pos.loc['paper'] = (1.510, 1.417, 1.505)

std_OOS_pos.loc['market'] = (0, 0, 0)
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std_IS_tc = pd.read_csv('standard_deviations_transaction_costs_IS.csv',

index_col=0)↪→

std_IS_tc.loc['no_penalty'] = std_IS.loc['simple_GD'].values

std_IS_tc.loc['paper'] = (0.550, 0.924, 0.745)

std_IS_tc.loc['market'] = (0, 0, 0)

std_OOS_tc = pd.read_csv('standard_deviations_transaction_costs_OOS.csv',

index_col=0)↪→

std_OOS_tc.loc['no_penalty'] = std_OOS.loc['simple_GD'].values

std_OOS_tc.loc['paper'] = (0.780, 1.305, 0.961)

std_OOS_tc.loc['market'] = (0, 0, 0)

'''Computing results for IS'''

results_IS = []

for elt in estimates_IS.T:

res = evaluation(estimates_IS.T[elt].values.reshape(3,1), data=data,

gamma=5)↪→

res['theta_me'] = estimates_IS.T[elt]['me']

res['std_theta_me'] = std_IS.T[elt]['std_me']

res['theta_btm'] = estimates_IS.T[elt]['btm']

res['std_theta_btm'] = std_IS.T[elt]['std_btm']

res['theta_mom'] = estimates_IS.T[elt]['mom']

res['std_theta_mom'] = std_IS.T[elt]['std_mom']

results_IS.append(res)

results_IS = pd.DataFrame(results_IS).T

results_IS.columns = estimates_IS.index + '_IS'

results_IS_pos = []

for elt in estimates_IS_pos.T:

res =

evaluation_pos_constraint(estimates_IS_pos.T[elt].values.reshape(3,1),

data=data, gamma=5)

↪→

↪→

res['theta_me'] = estimates_IS_pos.T[elt]['me']

res['std_theta_me'] = std_IS_pos.T[elt]['me']

res['theta_btm'] = estimates_IS_pos.T[elt]['btm']

res['std_theta_btm'] = std_IS_pos.T[elt]['btm']

res['theta_mom'] = estimates_IS_pos.T[elt]['mom']

res['std_theta_mom'] = std_IS_pos.T[elt]['mom']

results_IS_pos.append(res)

results_IS_pos = pd.DataFrame(results_IS_pos).T

results_IS_pos.columns = estimates_IS_pos.index + '_IS_pos'
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results_IS_tc = []

for elt in estimates_IS_tc.T:

res = evaluation_tc(estimates_IS_tc.T[elt].values.reshape(3,1),

data=data, gamma=5)↪→

res['theta_me'] = estimates_IS_tc.T[elt]['me']

res['std_theta_me'] = std_IS_tc.T[elt]['me']

res['theta_btm'] = estimates_IS_tc.T[elt]['btm']

res['std_theta_btm'] = std_IS_tc.T[elt]['btm']

res['theta_mom'] = estimates_IS_tc.T[elt]['mom']

res['std_theta_mom'] = std_IS_tc.T[elt]['mom']

results_IS_tc.append(res)

results_IS_tc = pd.DataFrame(results_IS_tc).T

results_IS_tc.columns = estimates_IS_tc.index + '_IS_tc'

'''Computing results for OOS'''

results_OOS = []

for elt in estimates_OOS.T:

res = evaluation(estimates_OOS.T[elt].values.reshape(3,1), data=data,

gamma=5)↪→

res['theta_me'] = estimates_OOS.T[elt]['me']

res['std_theta_me'] = std_OOS.T[elt]['std_me']

res['theta_btm'] = estimates_OOS.T[elt]['btm']

res['std_theta_btm'] = std_OOS.T[elt]['std_btm']

res['theta_mom'] = estimates_OOS.T[elt]['mom']

res['std_theta_mom'] = std_OOS.T[elt]['std_mom']

results_OOS.append(res)

results_OOS = pd.DataFrame(results_OOS).T

results_OOS.columns = estimates_OOS.index + '_OOS'

results_OOS_pos = []

for elt in estimates_OOS_pos.T:

res =

evaluation_pos_constraint(estimates_OOS_pos.T[elt].values.reshape(3,1),

data=data, gamma=5)

↪→

↪→

res['theta_me'] = estimates_OOS_pos.T[elt]['me']

res['std_theta_me'] = std_OOS_pos.T[elt]['me']

res['theta_btm'] = estimates_OOS_pos.T[elt]['btm']

res['std_theta_btm'] = std_OOS_pos.T[elt]['btm']

res['theta_mom'] = estimates_OOS_pos.T[elt]['mom']

res['std_theta_mom'] = std_OOS_pos.T[elt]['mom']

results_OOS_pos.append(res)

results_OOS_pos = pd.DataFrame(results_OOS_pos).T
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results_OOS_pos.columns = estimates_OOS_pos.index + '_OOS_pos'

results_OOS_tc = []

for elt in estimates_OOS_tc.T:

res = evaluation_tc(estimates_OOS_tc.T[elt].values.reshape(3,1),

data=data, gamma=5)↪→

res['theta_me'] = estimates_OOS_tc.T[elt]['me']

res['std_theta_me'] = std_OOS_tc.T[elt]['me']

res['theta_btm'] = estimates_OOS_tc.T[elt]['btm']

res['std_theta_btm'] = std_OOS_tc.T[elt]['btm']

res['theta_mom'] = estimates_OOS_tc.T[elt]['mom']

res['std_theta_mom'] = std_OOS_tc.T[elt]['mom']

results_OOS_tc.append(res)

results_OOS_tc = pd.DataFrame(results_OOS_tc).T

results_OOS_tc.columns = estimates_OOS_tc.index + '_OOS_tc'

'''Preparing the index in advance, otherwise it can become a bit long to

modify it by hand on LateX'''↪→

latex_index = (

r'$\hat{\theta}_{me}$',

r'$\sigma_{\hat{\theta}_{me}}$',

r'$\hat{\theta}_{btm}$',

r'$\sigma_{\hat{\theta}_{btm}}$',

r'$\hat{\theta}_{mom}$',

r'$\sigma_{\hat{\theta}_{mom}}$',

r'$\abs{w_{i,t}}$',

r'$\max{w_{i,t}}$',

r'$\min{w_{i,t}}$',

r'$\Sigma \mathbf{I}(w_{i,t} < 0) / N_t$',

r'$\Sigma w_{i,t} \mathbf{I}(w_{i,t} < 0)$',

r'$\Sigma \abs{w_{i,t+1} - w_{i,t}}$',

r'CE',

r'$\Bar{r}$',

r'$\sigma(r)$',

r'SR',

r'$\alpha$',

r'$\beta$',

r'$\sigma(\epsilon)$',

r'IR',

r'me',

r'btm',
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r'mom'

)

'''Concatenating and saving'''

results = pd.concat([results_IS, results_OOS], axis=1)

results = results.reindex(list(results.index[17:]) +

list(results.index[:17])).applymap(lambda x: round(x, 3)) # Reordering

numbers and rounding so that it becomes pretty

↪→

↪→

results.to_csv('results.csv')

# We do the same for IS and OOS individually

results_IS = results_IS.reindex(list(results_IS.index[17:]) +

list(results_IS.index[:17])).applymap(lambda x: round(x, 3)) #

Reordering numbers and rounding so that it becomes pretty

↪→

↪→

results_IS.to_csv('results_IS.csv')

results_IS_pos = results_IS_pos.reindex(list(results_IS_pos.index[17:]) +

list(results_IS_pos.index[:17])).applymap(lambda x: round(x, 3)) #

Reordering numbers and rounding so that it becomes pretty

↪→

↪→

results_IS_pos.to_csv('results_IS_pos.csv')

results_IS_tc = results_IS_tc.reindex(list(results_IS_tc.index[17:]) +

list(results_IS_tc.index[:17])).applymap(lambda x: round(x, 3)) #

Reordering numbers and rounding so that it becomes pretty

↪→

↪→

results_IS_tc.to_csv('results_IS_tc.csv')

results_OOS = results_OOS.reindex(list(results_OOS.index[17:]) +

list(results_OOS.index[:17])).applymap(lambda x: round(x, 3)) #

Reordering numbers and rounding so that it becomes pretty

↪→

↪→

results_OOS.to_csv('results_OOS.csv')

results_OOS_pos = results_OOS_pos.reindex(list(results_OOS_pos.index[17:]) +

list(results_OOS_pos.index[:17])).applymap(lambda x: round(x, 3)) #

Reordering numbers and rounding so that it becomes pretty

↪→

↪→

results_OOS_pos.to_csv('results_OOS_pos.csv')

results_OOS_tc = results_OOS_tc.reindex(list(results_OOS_tc.index[17:]) +

list(results_OOS_tc.index[:17])).applymap(lambda x: round(x, 3)) #

Reordering numbers and rounding so that it becomes pretty

↪→

↪→

results_OOS_tc.to_csv('results_OOS_tc.csv')
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'''Exporting to LateX (print)'''

results_IS.index = latex_index

results_OOS.index = latex_index

results_IS_pos.index = latex_index

results_OOS_pos.index = latex_index

results_IS_tc.index = latex_index

results_OOS_tc.index = latex_index

for elt in (results_IS, results_OOS, results_IS_pos, results_OOS_pos,

results_IS_tc, results_OOS_tc):↪→

print(

elt.to_latex()\

.replace('textbackslash ','')\

.replace('\\_','_')\

.replace('\\{','{')\

.replace('\\}','}')\

.replace('\\$','$')\

.replace('\\toprule','\\hline')\

.replace('\\midrule','\\hline')\

.replace('\\bottomrule','\\hline')\

.replace(r'{}','Variable')\

.replace('0.000','-')\

.replace('--','-')

)

The following script evaluates the different training times between GD methods where
numerical and analytical gradients are used.

from functions import *

import numpy as np

import time, copy

from graph_representation_functions import *

import torch

import torch.nn as nn

data = pd.read_csv('data_tilde_market_benchmark.csv', index_col=0).dropna()

L = 3 # Three features

eta = 200 # Same learning rate

epoch_num = 100 # Same number of epochs

h = 0.1
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x0 = np.zeros((L,1)) # Same starting point

fun = lambda x : -u(x, data=data)

der = lambda x : -u_der(x, data=data)

t1 = time.time()

x_numerical = copy.deepcopy(x0)

for _ in range(epoch_num):

grad = (fun(x_numerical + np.eye(L) * h) - fun(x_numerical))/h #

Numerical gradient↪→

x_numerical -= (eta * grad).reshape(L,1)

t2 = time.time()

t3 = time.time()

x_analytical = copy.deepcopy(x0)

for _ in range(epoch_num):

grad = der(x_analytical) # Analytical gradient

x_analytical -= (eta * grad).reshape(L,1)

t4 = time.time()

model = UnconstrainedLinearModel(3)

optimizer = torch.optim.SGD(model.parameters(), lr=0.075)

dataloader = dataloader_converter(data, compute_state_transition=False)

t5 = time.time()

for _ in tqdm(range(epoch_num)):

loss=0

for d in dataloader:

x, w_bar, r_next = d['x'], d['w_bar'], d['r_next']

w = model(x, w_bar)

loss = loss + negU(w, r_next, gamma=5)

model.zero_grad()

loss.backward()

optimizer.step()

t6 = time.time()

x_torch = nn.utils.parameters_to_vector(model.parameters()).detach().numpy()

df = pd.DataFrame(
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np.concatenate([x_numerical.T[0], x_analytical.T[0],

x_torch]).reshape(3,3).T,↪→

index = ('me','btm','mom'),

columns = ('Numerical', 'Analytical (pandas/numpy)', 'Analytical

(PyTorch)')↪→

)

df.loc['Time elapsed'] = (t2-t1, t4-t3, t6-t5)

df = df.round(3)

df.to_csv('analytical_v_numerical_gradient.csv')

print(

df.to_latex()\

.replace(r'{}','Variable')\

.replace(r'toprule','hline')\

.replace(r'midrule','hline')\

.replace(r'bottomrule','hline')

)
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