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Time Varying Machine Learning:

Adaptive Regularization in Ridge Regression

Lucien Kodeli and Evgenii Kostromin

Abstract

This thesis investigates the performance of different methods of dynamic selection of Ridge reg-

ularization strength in cross-sectional return prediction. We evaluate several adaptive strategies:

Nested Walk-Forward Cross-Validation, Follow-the-Leader Online Expert Learner, Gaussian Pro-

cess Thompson Sampling Bandit, and a Meta-Learner. Results show that optimal Ridge penalty

hyperparameter changes over time, particularly post-2000 when return predictability declines as

noise increases proving the necessity of adaptive methods in return prediction. We show that the

Gaussian Process bandit approach offers the best trade-off between predictability, speed, and prof-

itability, while the meta-learner delivers the highest predictive R2 albeit not materializing into solid

economic performance.



Time Varying Machine Learning:

Adaptive Regularization in Ridge Regression

1 Introduction

Predicting cross-sectional stock returns is a central challenge in empirical finance, complicated by

the inherently low signal-to-noise ratio and the dynamic nature of financial markets. This thesis

focuses on the critical role of adapting model regularization over time, particularly the Ridge

regression penalty hyperparameter, with the goal of improving predictive accuracy and economic

relevance in the face of evolving market regimes. Rather than assuming a static model, we examine

whether allowing the regularization strength to vary, through strategies like online expert learning,

Gaussian Process (GP) bandits, and meta-learners, leads to more resilient and effective predictions.

Through these, this thesis introduces several methodological innovations to the problem of

dynamic regularization in cross-sectional return prediction. First, we develop a fully rolling and

expanding-window validation framework that mimics the real-time information flow set of investors,

avoiding lookahead bias and better reflecting out-of-sample uncertainty. Secondly, for the purpose

of a model called meta-learner, we build a rich meta-dataset by augmenting the number of training

tasks through varying window lengths, enabling the model to generalize across diverse market

regimes. Third, we compare a range of adaptive strategies, including online expert learners, GP

bandits, and meta-learners, under a unified evaluation pipeline using both statistical and economic

criteria. Lastly, we contribute a rigorous assessment of how predictive performance translates (or

fails to translate) into portfolio outcomes, particularly in environments where return predictability

is structurally declining.

We evaluate these methods using a rich panel of monthly U.S. stock returns and firm character-

istics from January 1925 to June 2019. Cross-sectional R2 serves as the main metric of predictive

accuracy, complemented by economic measures such as portfolio returns and Sharpe ratios. Our

modeling framework emphasizes the importance of dynamic tuning, computational efficiency, and

adaptability to structural breaks; especially around the year 2000, when return predictability de-

teriorates.

This deterioration is not purely statistical but likely driven by economic forces: as simple

return-predictive strategies became widely adopted by hedge funds and systematic investors, the

exploitable alpha embedded in commonly used firm characteristics eroded. As more capital chased

these signals, the return patterns they once captured were arbitraged away, leading to noisier and

less stable relationships. This highlights the importance of models that can adapt in real-time to

changing market dynamics and remain effective even as the underlying data environment becomes

more competitive and less informative. This work contributes to the growing literature on dynamic
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modeling in empirical asset pricing, particularly in contexts where alpha decays over time and the

forecasting environment evolves rapidly.

Our results show that several adaptive strategies outperform static Ridge regression, particularly

in adapting to shifting market regimes. The GP bandit achieves the highest Sharpe ratio (0.852),

robust returns (3.30%), and a predictive out-of-sample R2 of 0.61%. The meta-learner, while

delivering the highest statistical fit (R2 = 0.76%), generates more moderate economic performance

(return of 2.63%, Sharpe = 0.770) compared with the expert learning and GP bandit models,

reflecting the sometimes imperfect alignment between predictive accuracy and portfolio outcomes.

In addition, it is much more computationally expensive than all other models. Simpler strategies

like the expanding-window expert learner remain competitive, whereas the rolling-window expert

underperforms in both dimensions. Overall, adaptivity improves model robustness, but the best-

performing methods are those that balance responsiveness with stability.

To sum up, the expanding-window expert learner, GP bandit, and meta-learner offered the best

combinations of statistical precision and economic performance, consistently adjusting to evolving

market conditions. The GP bandit’s strength lies in its principled balance between exploration (i.e.

trying less-tested λ values to gather information) and exploitation (i.e. using λ values that have

performed well so far), enabling it to quickly adjust to shifts in return dynamics without overfitting.

The meta-learner, despite achieving the highest R2, lagged slightly in returns due to its reliance

on a longer learning phase, which delayed economic benefits. Methods like the rolling-window

expert learner and nested cross-validation underperformed because they are very reactive to local

performance information and suffer from high variance, making them less effective in the presence

of structural breaks or weak signal environments.

We observe that adaptive models are able to efficiently detect regime shifts and adjust shrinkage

intensity, accordingly, preserving economic value even when statistical fit declines. These findings

underscore the importance of time-aware model tuning in financial machine learning and suggest

that robust asset pricing models must evolve in tandem with the market conditions they aim to

exploit.

2 Literature Review

Stock return predictability exhibits fundamental time variation, challenging traditional static mod-

eling approaches. Early studies established theoretical foundations for time-varying risk premia

(Merton, 1973) and documented predictive relationships using variables like dividend yields and

interest rates (Fama and Schwert, 1977; Campbell and Shiller, 1988). However, subsequent research

revealed these relationships are unstable across economic regimes (Goyal and Welch, 2008), with

apparent predictability often disappearing in rigorous out-of-sample tests (Bossaerts and Hillion,

1999). This instability stems from structural breaks in financial markets (Stock and Watson, 1996;

Paye and Timmermann, 2006), necessitating models that adapt to evolving market conditions.

Initial solutions to non-stationarity included rolling-window estimation and exponential forget-
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ting factors (Pesaran and Timmermann, 2007; Hyndman et al., 2008). These methods continuously

update coefficient estimates but maintain static regularization. Parallel statistical developments

established shrinkage foundations: Lindley and Smith (1972) demonstrated Bayesian priors induce

ridge-like shrinkage, presaging modern regularization techniques. The core insight that optimal

shrinkage depends on prevailing market conditions remained, however, underdeveloped in financial

applications.

As machine learning entered finance, researchers adapted regularization methods for non-

stationary environments. Simple extensions include rolling-window LASSO (Koo et al., 2020)

and kernel-weighted time-varying LASSO (Kapetanios and Zikes, 2018). More sophisticated ap-

proaches emerged as well: Monti et al. (2018) developed an adaptive regularization scheme which

infers an adaptive Lasso penalty online. By monitoring recent performance, their algorithm adjusts

the penalty parameter to track regime changes, allowing both coefficients and the degree of shrink-

age to adapt over time. Yousuf and Ng (2019) extended these ideas to boosting, introducing a

boosting-based method that focuses on recent observations at each iteration, effectively performing

variable selection and coefficient estimation in one stage under non-stationarity. A key theoretical

advance by Goulet Coulombe (2023) established duality between time-varying parameter (TVP)

models and ridge regression with temporal smoothing penalties.

Surveys like Nagel (2021) document the recent explosion of ML applications in asset pricing,

emphasizing that accounting for non-stationarity is essential when applying complex ML methods

to financial data. In particular, Nagel (2021) focuses on using the past returns data for future

returns prediction, emphasizing the importance of incorporating prior knowledge on the features

by scaling the covariates matrix in Ridge regression. While Nagel (2021) shows that the task of

choosing the optimization parameter for cross-validation is non-trivial for return prediction, he uses

a leave-one-year-out method for hyper-parameter tuning, thus not incorporating the time-variation

methods in his research.

A landmark study by Gu et al. (2020) conducted a horse-race of ML techniques—ridge, lasso,

elastic net, trees, random forests, and neural networks—to predict U.S. stock returns, using an

expanding-window re-training approach. They report large economic gains (e.g. an annualized out-

of-sample Sharpe ratio of 0.77 for a neural network market-timing strategy vs. 0.51 for the historical

mean) and show that nonlinear methods capture interactions and adapt through re-fitting, though

all models agree on key predictors such as momentum and volatility.

Parallel advances occur in cross-sectional ML for factor construction (e.g. Kelly et al. 2019)

and asset allocation (e.g. Routledge 2019), with frequent re-estimation to accommodate fading

anomaly payoffs. Nagel and Xu (2019) propose an “asset pricing with fading memory” framework

in which investors assign exponentially decaying weights to past data—behavior that corresponds

to econometricians using weighted or rolling estimators.

Finally, econometric tests for episodic predictability (e.g. Giroud and Mueller 2019) complement

adaptive ML methods by detecting when a time-varying model is needed versus when a simpler

static model suffices. The state of the art combines real-time detection of regime changes with
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adaptive modeling—whether via regime-switching, TVP, or dynamic penalties—to yield robust

return forecasts.

3 Problem Statement

Our study investigates time-dependent hyperparameter selection for Ridge regression, building di-

rectly on the experimental design of Nagel (2021). Our study begins from the return-prediction

experiment in Chapter 3 of Nagel (2021). The goal is to approximate conditional expected excess

returns of an individual stock i,

E[ri,t+1 | xi,t] = f(xi,t) (1)

where the predictor vector xi,t is built solely from the stock’s own past monthly returns observed at

time t, and used to predict the return at time t+1 (Nagel, 2021). The first lag is skipped to prevent

micro-structure noise and short-horizon biases from contaminating the analysis. Specifically, the

linear model

ri,t+1 =

119∑
k=1

bk ri,t−k +

119∑
k=1

ck r
2
i,t−k +

119∑
k=1

dk r
3
i,t−k + εi,t+1 (2)

uses three sets of 119 lags—levels, squares, and cubes—yielding 357 regressors.

Estimation uses the ridge estimator,

β̂
ridge

= argmin
β

{
∥r−Xβ∥22 + λ ∥β∥22

}
(3)

where

• r is the (T ∗N) × 1 vector of demeaned monthly stock returns to be predicted, N being the

number of firms included;

• X is the T ×357 matrix whose columns are the lagged returns, their squares, and their cubes;

• β is the 357× 1 vector of slope coefficients to be estimated;

• ∥·∥2 denotes the Euclidean (L2) norm; and

• λ > 0 is the Ridge penalty that controls the amount of shrinkage applied to the coefficients.

The penalty λ chosen by leave-one-year-out (LOYO) cross-validation. Each fold removes

an entire calendar year, fits the model on the remaining years, and records the validation R2.

Averaging the R2 across all left-out years, the algorithm selects the λ that maximizes the cross-

validated R2. A key insight from Nagel (2021) is that prior knowledge about scale matters: unequal

rescaling of higher-order lags (e.g. dividing r2t−1 by 2 and r3t−1 by 4) reduces the dominance of

extreme observations and improves predictive fit. The Unequal-Scaling, R2-optimized Ridge

configuration is therefore our baseline.
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3.1 Limitations of LOYO Cross-Validation

Although LOYO CV is intuitive and yields stable estimates when the data are roughly stationary

across calendar years, it may be misleading in settings with pronounced time variation. LOYO

permits the model to be trained on future information relative to certain test observations, thereby

overstating out-of-sample performance. In our replication we obtain an apparently impressive mean

R2 of 1.011% using LOYO on the full sample. Given the low signal-to-noise ratio in monthly equity

returns, an out-of-sample R2 of just over one percent is remarkable—historically, even a few basis

points of predictive R2 can translate into sizable economic gains and high Sharpe ratios. Yet

a simple nested walk-forward (Section 5.1) procedure—with a five-year rolling training window

and strictly forward validation—produces a mean R2 of −0.180%. The 1.2 percentage-point gap

underscores how LOYO can ignore temporal dependence and model drift that are endemic to

financial data.

3.2 Walk-Forward Validation and Optimal Regularization

Walk-forward validation respects chronology: models are fit on past data and evaluated on truly

unseen future periods, mirroring live deployment. Because the “right” amount of shrinkage can

drift with market regimes, we compare four complementary schedulers that all honor this forward

flow of information but differ in how they search for (and adapt to) the optimal penalty:

1. Nested Walk-Forward Cross-Validation. A transparent benchmark: for each test year

we re-estimate the model on the previous five years and pick λ via an inner LOYO loop. It

is simple, leakage-free, and delivers a clean estimate of true OOS R2—but can be computa-

tionally heavy and myopic to within-window noise.

2. Follow-the-Leader Online Expert Learner. Treat each candidate λ as an “expert” and

keep a running score of its past forecast R2. The next year uses the best-scoring expert. This

online rule is fast, easy to tune, and can track gradual regime shifts without re-running a full

CV at every step.

3. Gaussian Process Thompson Sampling Bandit. Model the reward function f(λ) with

a Gaussian Process Regression to balance exploitation (use the current best λ) with cheap,

targeted exploration (test only a small batch of promising alternatives each year). Correlation

across nearby penalties speeds learning and keeps computation low, making it attractive when

the signal is weak and the grid is dense.

4. Meta-Learner. A model learns the mapping from “market state” features to the historically

best λ. Once trained on many past tasks, it can jump directly to an appropriate penalty when

conditions change, offering a flexible, data-driven alternative to manual tuning rules.

These methods were chosen because they span the main strategies for dealing with time variation

in hyperparameters: exhaustive but honest evaluation (nested CV), light-weight online adaptation
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(experts learner), principled exploration–exploitation (GP bandit), and context-aware policy learn-

ing (meta-learner). For each we report genuine OOS R2, Nagel-style portfolio performance, and

total run time, always using only information available at the decision date.

4 Data Preparation

This section details the preparation of monthly U.S. equity data used in the Ridge–regression exper-

iment of Nagel (2021, p. 35). The raw sample—downloaded from the CRSP monthly files—covers

RET (return), PRC (price), SHROUT (number of shares), and HEXCD (exchange index) of the US stocks

from January 1925 to June 2019. All cleaning steps are implemented in Python and ensure that

the final panel is free of inconsistencies, duplicates, and unsuitable securities before the regression

analysis.

4.1 Data Processing

We process monthly U.S. equity data from CRSP (1925-2019) following Nagel (2021)’s methodology:

• Data cleaning: Remove records with missing TICKER identifiers and eliminate duplicate

observations based on TICKER-DATE pairs.

• Gap handling: Ensure continuous monthly series for each stock by inserting missing months

with NaN returns to maintain temporal alignment.

• Feature engineering: Generate 119 lagged returns (rt−2 to rt−120) along with their squared

and cubed terms, yielding 357 predictors.

• Microstructure filters: Exclude small stocks (below NYSE 20th percentile market-cap) and

penny stocks (lagged price < $1), with market-cap calculated as CAP = PRC×SHROUT ×
1000.

• Standardization: Each month, cross-sectionally demean and scale all variables using x∗i,t =

(xi,t − x̄t)/σt, discarding months with single observations.

• Weighting scheme: Assign equal weight to each calendar month using wi,t = 1/(ntT ) where

nt is the number of stocks in month t and T is total months.

4.2 Final Panel

The cleaned panel spans July 1972–January 2019 and contains

• demeaned and standardized returns ri,t+1,

• lags RET lag k, k = 2, . . . , 120,

• quadratic and cubic lags RET2 lag k, RET3 lag k,
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• equal-weight monthly observation weights.

Note that observations for January 1970–June 1972 are absent after gap-filling, so regression

results may differ marginally from those in Nagel (2021, p. 39).

Table 1: Descriptive statistics for a representative subset of predictors1

RET RET lag 2 RET lag 3 RET2 lag 2 RET2 lag 3 RET3 lag 2 RET3 lag 3 weight

Count 738421 738421 738421 738421 738421 738421 738421 738421
Mean 0 0 0 0 0 0 0 0.000001
Std 0.0933 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0
Min −1.0489 −12.0166 −12.0620 −1.3798 −1.3833 −39.5163 −39.6498 0.000001
25% −0.0468 −0.5351 −0.5362 −0.3270 −0.3335 −0.1096 −0.1131 0.000001
50% −0.0029 −0.0497 −0.0491 −0.2087 −0.2105 −0.0522 −0.0512 0.000001
75% 0.0424 0.4703 0.4733 −0.0253 −0.0239 0.0070 0.0130 0.000002
Max 4.1597 37.8557 37.5795 46.9376 46.9620 46.9678 47.0098 0.000003

4.3 Regression Results

A simple OLS regression with equal scaling and no regularization (λ = 0) attains a respectable

in-sample R2 of 5.80%, yet its leave-one-year-out cross-validated (out-of-sample) R2 collapses to

−1.76%, a textbook case of over-fitting. Re-estimating the same model with the unequal-scaling

Ridge specification of Nagel (2021) and tuning λ by the same LOYO procedure boosts the out-

of-sample R2 to 1.01%. This result is yet significantly lower than the in-sample R2 of 3.13%,

emphasizing the importance of using the out-of-sample measures in return prediction.

Translating these forecasts into a trading strategy via Nagel’s portfolio-construction rule—weights

proportional to the predicted returns,

ω̂t−1 =
µ̂t−1∑N

i=1|µ̂i,t−1|
(4)

and evaluated with the same leave-one-year-out folds—yields2:

• cross-validated mean portfolio return: 4.11%,

• cross-validated standard deviation: 3.88%,

• cross-validated Sharpe ratio: 1.0607.

Thus, ridge regularization not only corrects the negative out-of-sample R2 of the OLS bench-

mark but also delivers economically meaningful performance when implemented as a dollar-neutral

long–short portfolio.

1The full data set contains 360 standardized predictor columns—lags 2–120 in levels, squares, and cubes. The
table reports only eight variables plus the observation weight to illustrate typical scale and distribution.

2All portfolio statistics reported below are annualized.

7



5 Methodology

While financial return series are often modeled as weakly stationary, their conditional moments—such

as risk premia—can evolve over time with business-cycle conditions, changes in liquidity, or arbi-

trage pressures. This time variation implies that a hyperparameter tuned on the distant past

may become suboptimal in the present as market dynamics shift. Motivated by these regime shifts,

this paper compares a suite of time-dependent hyperparameter-tuning schemes for return-prediction

Ridge-based models under a consistent walk-forward evaluation.

We therefore assess each method along three dimensions: (i) predictive accuracy measured by

genuine out-of-sample R2, (ii) computational efficiency, and (iii) economic value captured through

Nagel-style long–short portfolio metrics. The present section formalizes and contrasts the tech-

niques—nested cross-validation with leave-one-year-out folds, two variants of an online expert

learner with memory decay, a GP bandit, and a meta-learner providing the mathematical notation

and intuition required for the empirical tests that follow.

5.1 Nested Walk-Forward Cross-Validation

First method we adopt is a nested walk-forward scheme whose main virtue is its simplicity: it

uses a similar to Nagel’s LOYO Cross-Validation approach seen before, yet it delivers an estimate

of true out-of-sample R2 that is directly comparable to the one we achieved in the previous section.

The procedure has two concentric loops.

Outer (walk-forward) loop. At calendar year t we train the model on all data up to t− 1 and

evaluate it on the next unseen year t. We then roll the estimation window forward by one year and

repeat, mimicking the information set of a real-time investor.

Inner (LOYO) loop. Inside each training window we tune the Ridge penalty by omitting one

year at a time:

CV(h) =
1

|Y|
∑
y∈Y

L
(
f
(h)
−y , Dy

)
(5)

where Y is the set of years in the window, f
(h)
−y is the model fitted with hyper-parameter h on

all years except y, Dy is the left-out year , and L is the negative out-of-sample R2 loss. The h that

minimizes CV(h)—equivalently, maximizes the mean R2 across left-out years—is selected and the

model is re-estimated on the full window before being tested on year t.

This design was selected for several reasons:

• True out-of-sample check. Every hyper-parameter choice is validated exclusively on data

that precede the test year, so the resulting R2 is a genuine forward-looking metric.
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• Block structure matches market regimes. Year-long folds expose the model to distinct

macro conditions—bull, bear, crisis—without the leakage that plagues ordinary k-fold CV on

time-series data.

• Ease of implementation. The method is a direct adaptation of the approach reported in

Nagel (2021).

Although computationally heavy, the method remains tractable for monthly stock data and gives

a robust benchmark: if a model cannot achieve a positive walk-forward R2 under this protocol, it is

unlikely to do so in live trading. Hence we rely on the nested LOYO metric as the definitive starting

point for assessing out of sample perfomance of the unequal-scaling Ridge regression reported in

Nagel (2021).

5.2 Online Expert Learner: Follow-the-Leader approach

Conceptual overview. The online expert framework reframes hyperparameter tuning as a se-

quential learning problem: each candidate hyperparameter value (e.g. a Ridge penalty λ) is treated

as an expert that produces a forecast ŷi,t for period t. After the realized return yt is observed,

the algorithm learns the loss of every expert, ℓ(ŷi,t, yt), and updates a weight vector wt so that

better-performing experts receive larger weight in the next round. A classical update is the Expo-

nentially Weighted Average (EWA) or Hedge rule (Littlestone and Warmuth, 1994; Cesa–Bianchi

and Lugosi, 2006):

wi,t+1 =
wi,t exp[− η ℓ(ŷi,t, yt)]∑N

k=1wk,t exp[− η ℓ(ŷk,t, yt)]
(6)

where η > 0 is a learning rate.

Variants in the literature. A large literature extends Hedge to handle changing best experts.

The Fixed-Share algorithm of Herbster and Warmuth (1998) periodically “bleeds” weight from

leaders to laggards, allowing quick recovery when market regimes flip. Adaptive learning-rate

schemes such as AdaHedge (de Rooij et al., 2014) or BOA (Wintenberger, 2017) further balance

stability and reactivity. Empirical finance papers (e.g. Remlinger et al., 2021) have shown that

online aggregation of factor models or ML predictors can out-perform any static specification while

remaining robust to structural breaks.

Implementation in our setting. In our study we adopt the limit case of EWA in which the

learning rate tends to infinity, η → ∞, so the weight mass collapses onto the single best-performing

expert. This simplification—often called Follow-the-Leader—removes the need to fine-tune η and

keeps the implementation transparent.

In our implementation we cast each candidate Ridge penalty λi ∈ Λ as an expert. Performance

in year t is measured by the out-of-sample coefficient of determination rt(λi) ≡ R2(λi, t). For a

scoring mechanism, we also introduce a decaying memory parameter ρ:
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Scoret(λi) = ρScoret−1(λi) + rt(λi), 0 < ρ ≤ 1 (7)

and select λ⋆
t = argmaxλi∈Λ Scoret(λi) for the next-period forecast. Setting ρ = 1 yields full

memory; values ρ < 1 impose exponential forgetting so that recent performance carries more weight.

We study two scheduling variants:

1. Rolling window (5-year) – experts are evaluated on a model trained with the most recent

five years (t− 5, . . . , t− 1) and validated on year t. This emphasizes local market conditions

but discards distant history.

2. Expanding window – training uses the entire history up to t−1, so information accumulates

indefinitely. Memory decay (ρ < 1) prevents the score from being dominated by ancient

observations, enabling adaptation without losing the benefits of a large sample.

In both cases the algorithm requires only the computation of rt(λi) for each λi once per year,

after which the best-scoring penalty is immediately deployed. The procedure therefore eliminates

upfront hyperparameter selection: instead of seeking a single “optimal” λ, the learner continually

re-optimizes in real time, mirroring an investor who tests and continuously balances models as new

data arrive.

Trade-offs and benefits. Compared with nested walk-forward CV, the expert learner delivers

finer granularity in adaptation, yet it demands parallel maintenance of all N candidate models.

Computation remains manageable for the modest grid of Ridge penalties used here (N ≪ 100) and

can be updated incrementally. If ρ is set too low, the learner may overreact to noise; if too high, it

may lag sudden regime shifts. With tuned decay, however, the method has a potentiality to offer

a powerful balance of simplicity, statistical robustness, and real-time adaptivity—qualities valuable

in non-stationary return-prediction tasks.

5.3 Bandit-Style Learner: Gaussian Process Thompson Sampling

Conceptual overview. A bandit algorithm treats hyperparameter choice as a sequential explo-

ration–exploitation problem. At each period t we must pick one “arm”—here, a Ridge penalty

λ—observe its realized reward (the next-year out-of-sample R2), and then decide which arm to pull

next. Unlike the online–expert setting where we see the loss of all experts each round, the bandit

learner only observes the arm(s) it actually evaluates. The core idea is to balance: (i) exploitation

of penalties that have worked well so far, and (ii) exploration of penalties whose performance is

uncertain but potentially better.

Variants in the literature. Bandit algorithms differ mainly in how they trade off exploration vs.

exploitation and in the assumptions on the reward process. In stochastic settings, upper–confidence

rules (UCB) choose the arm with the highest optimism-adjusted mean (Auer et al., 2002a), whereas
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Thompson sampling draws an arm according to its posterior probability of being optimal (Thomp-

son, 1933; Russo et al., 2018). For adversarial (non-stationary or even adversarially chosen) rewards,

EXP3 randomizes with exponential weights over arms (Auer et al., 2002b). When the action space

is continuous (e.g., λ ∈ R+) and rewards vary smoothly, Gaussian Process bandits such as GP-UCB

(Srinivas et al., 2010) or GP–Thompson sampling (Russo and Van Roy, 2014) model f(λ) directly

and exploit correlation so that a single evaluation informs nearby λ’s.

Implementation in our setting. Our setting utilizes a modified Gaussian Process Thompson

sampling approach to select the best preforming Ridge penalty λt. We model the mapping from λ

to expected one-year-ahead performance with a GP prior on x = log λ:

f(x) ∼ GP(m, k),

with a squared-exponential kernel k plus a white-noise term. Rewards are the annualized out-of-

sample R2 for year t, rt(λ) ≡ R2(λ, t), linearly rescaled to [0, 1] via yt(λ) = max{0,min{1, (rt(λ) +
1)/2}} to stabilize GP fitting.

The procedure consists of 3 key ingredients:

1. Pilot grid. In the first validation year we evaluate the entire grid of 20 log-spaced penalties

to initialize the GP with a dense, low-noise set of observations.

2. Exploit/Explore split. Each subsequent year: (a) we deploy the penalty with the highest

GP posterior mean, λ⋆
t = argmaxλmt(log λ), for the actual forecast (exploitation), and (b) we

sample from the GP posterior once (Thompson sampling) to pick a batch of B additional

penalties to test (exploration). The GP is then updated with the newly observed rewards,

and the loop advances to year t+1. Only these B penalties are re-fitted, keeping computation

low.

3. Memory decay. To avoid stale regimes dominating the GP, observed rewards are exponen-

tially “forgotten”:

yi = ρ yi + (1− ρ) yt(λi), 0 < ρ ≤ 1 (8)

with ρ = 1 in the baseline.

Algorithmically, this yields exactly one “production” λ per year plus a small exploratory batch.

The GP is re-fit after each round on the (decayed) reward vector, providing a smooth estimate of

the reward surface over λ. Unlike pure Thompson sampling, however, the final forecast uses the

posterior-mean maximiser, yielding a smoother λt path and lower forecast variance.

Trade-offs and benefits. Compared with the Follow-the-Leader expert learner, the GP–bandit:
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• Saves computation: after the pilot, it evaluates only a handful of penalties each year rather

than the full grid.

• Shares information: the GP prior correlates nearby λ’s, accelerating learning relative to

the other methods.

• Produces smoother λt paths: using the posterior mean for deployment avoids the jitter

that can arise from pure sampling policies.

The cost is additional modeling complexity (kernel choice, GP hyperparameters) and longer per-

round updates due to GP fitting. But for our modest grid (20 penalties) and yearly frequency,

these costs are minor and the approach offers a principled way to explore efficiently while staying

close to the best-known penalty.

5.4 Meta-Learner

Conceptual overview. Ameta-learner is a model designed to learn how to select among different

configurations of another model, such as different hyperparameter values, based on contextual

information. In our case, the meta-learner determines which Ridge regression penalty parameter λ

to apply in different market environments. Instead of performing a fresh grid search over λ each

time market conditions shift, we train a separate model that learns to associate market conditions

with historically optimal λ* values.

The meta-learner operates by first dividing the historical data into a sequence of rolling tasks

of fixed length (10 years in our baseline). For each task, Ridge regressions are trained using a

set of candidate λ values. However, instead of using leave-one-year-out cross-validation (LOYO),

we adopt a more realistic time-based evaluation: each Ridge model is trained on the entire task

window and then evaluated on its ability to predict returns in the year that immediately follows.

For each λ, we compute the out-of-sample R2 on this post-task year and record the result. This re-

sults in a dataset where each row corresponds to a specific task-lambda pair and contains: the task

period (e.g., 1972–1982), the candidate λ, the resulting R2 performance, and a set of market char-

acteristics corresponding to the task’s period (e.g., mean return, volatility, skewness, correlation,

macroeconomic indicators).

Instead of selecting just the best λ per task, we keep all candidate λs and their performances.

This richer training dataset enables the meta-learner to learn the functional relationship between

the market regime and model performance across multiple λs.

The meta-learner model itself is implemented using a Random Forest model. Random Forests

are ensemble learning methods that construct a large number of decision trees during training

and aggregate their predictions. They are well-suited for this task due to their robustness to

overfitting, ability to capture nonlinear interactions, and resilience to feature noise. Given regime

characteristics as inputs, the Random Forest learns to predict the λ value that is likely to perform

best under similar market conditions.
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To ensure sufficient data for training, we use a relatively small grid of λ values (typically 5–6),

as supported by the literature. Around 30 to 40 historical tasks are generally needed for the

meta-learner to generalize effectively.

Implementation in our setting. Rather than dividing the dataset once into a training and test

phase, we extend the meta-learning framework into an expanding-window, walk-forward model. We

begin by training on the first available task, evaluating λs on the year immediately following it,

and using that as the initial training point for the meta-learner. We then use the meta-learner to

predict the best λ for the next unseen task (ensuring no overlap in years), and use that λ to train

a Ridge model over the lagged returns of the preceding task and forecast the returns of the current

year.

This process is repeated iteratively: at each step, we expand the meta-training dataset by one

task, retrain the meta-learner, and make a prediction for the next year using the most recent non-

overlapping task’s features. This approach simulates the perspective of a real-time investor who

updates their model annually using only past information.

Feature Engineering and Extensions. Once optimal λ values have been predicted for each

year, we train a Ridge model on the corresponding task (e.g., the prior 10 years of data) using

the predicted λ and use it to forecast returns for that year. This allows us to assemble a series of

out-of-sample return predictions across time.

Prior to training, we enrich the dataset with both return-derived features (mean returns, volatil-

ity, dispersion, skewness, kurtosis, autocorrelation, percentage of positive returns, volatility disper-

sion) and macroeconomic indicators from FRED (Federal Funds Rate, 10Y Treasury yield, average

investment-grade yield, inflation, and GDP growth) representing the market characteristics from

which the meta-learner model will learn to pick the optimal λ∗.

To further augment the meta-training data, we construct additional tasks using shorter historical

windows of 2, 3, 4, 5, 6, 7, 8, 9, and 10 years. For each task length, we recalculate all relevant

features and model performance metrics. While we ultimately use a 10-year window for forecasting

(as it provides a good balance between noise reduction and sufficient meta-training data), these

additional tasks help increase the meta-learner’s training volume and robustness. This choice

reflects the trade-off between the stability gained from longer training windows and the higher

number of training samples enabled by shorter ones.

6 Empirical Results

6.1 Nested Walk-Forward Cross-Validation

Figure 3 visualizes the annualized cross-validated R2, the dynamically chosen Ridge penalties, and

the distribution of yearly R2 outcomes produced by the five-year rolling, LOYO-nested procedure.

Two findings stand out.
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Predictive accuracy. The walk-forward R2 series is highly volatile and negative on average.

The overall mean is −0.18%, with virtually no difference before versus after 2000 (−0.18% vs.

−0.17%). Even the best individual years barely exceed 4%, while several episodes plunge below

−10%. Contrast this with the ≈ 1.0% positive out-of-sample R2 reported by Nagel (2021) under

his leave-one-year-out static cross-validation. Once we enforce a strict walk-forward chronology

the apparent predictive power of the unequal-scaling Ridge model disappears, confirming that the

earlier result could be a form of a look-ahead optimism.

Penalty instability. The right-hand panel of the Figure 3 shows the selected penalty λt for each

validation year. Choices oscillate wildly: periods of extremely large shrinkage (λ = 10) alternate

with repeated selections of very mild penalties (λ ≈ 0.6) and occasional dips to the minimum

grid value (λ = 0.1). Such instability suggests that the signal-to-noise ratio is too weak for the

inner LOYO to pin down a persistent optimal penalty; small changes in the training window flip

the preference from near-OLS to near-zero coefficients. The procedure thus trades one form of

overfitting for another: it no longer peeks into the future, but it overreacts to idiosyncrasies of each

five-year window.

Computational burden. The nested routine required approximately 1 100 seconds on a mod-

ern workstation—orders of magnitude heavier than a single LOYO run—because every outer fold

triggers |Λ| × W = 20 × 5 inner fits. Given the modest predictive benefit (indeed, a detriment),

such cost further undermines the method’s appeal for this particular data set.

Table 2: Summary statistics—nested walk-forward CV

Metric Value

Mean CV R2 (overall) −0.18%
Mean CV R2 (pre-2000) −0.18%
Mean CV R2 (post-2000) −0.17%
Annualized mean portfolio return 1.98%
Annualized standard deviation 4.77%
Annualized Sharpe ratio 0.416
Execution time 1 099.4 sec

In sum, when the hyper-parameter is tuned strictly with information available ex ante, the

unequal–scaling Ridge model fails to beat a zero-predictability benchmark and displays pronounced

year-to-year instability — findings that contrast sharply with the more optimistic figures reported

under Nagel (2021)’s non-rolling validation. Intriguingly, the strategy nevertheless earns a positive

cumulative return prior to 2000, even though the mean OOS R2 for that sub-sample is negative.

The explanation lies in the left-skewed distribution of yearly R2 values: a handful of extreme losses

drag down the average, whereas the median R2 is still positive. Hence a small number of bad years

depress the mean statistic without eliminating the overall profitability of the trading rule. This

observation reinforces Nagel’s caution that the average cross-validated R2 is not, by itself, a reliable

14



guide to the economic value of a forecasting model.

6.2 Follow-the-Leader Online Expert Learner

6.2.1 Rolling Window Modification

To gauge how the memory–decay parameter ρ shapes performance, we run the rolling-window

expert learner on a grid ρ ∈ {0.05, 0.10, . . . , 1.00} and record the annualized walk-forward R2 for

each value.3 Figure 4 collects four diagnostics: overall R2 as a function of ρ (top-left), the same

metric split before/after 2000 (top-right / bottom-left), and execution time (bottom-right).

Sensitivity to memory decay. Performance is highly non-linear in ρ. Very short memory

(ρ < 0.4) yields negative or near-zero R2, mirroring the instability seen in nested CV. As ρ passes

0.5, accuracy improves monotonically, peaking at ρ⋆ = 0.95 with an overall walk-forward R2 of

0.23%. Pushing memory to the limit (ρ → 1) causes a mild drop, indicating that some forgetting

is helpful but wholesale discarding of past information is harmful.

Regime dependence. A closer look at the split samples reveals why. Before 2000, the R2 curve

is strictly increasing : the more past information the learner remembers, the higher the forecast

precision, peaking above 0.4% when memory is almost full. After 2000, however, the curve goes

the other way: R2 stays just below zero for moderate decay but collapses once ρ > 0.8, turning

strongly negative as stale information overwhelms the weak contemporary signal. In other words, a

long memory is beneficial in the earlier regime—when past-return patterns persist—but becomes a

liability once the predictive content of returns fades. The optimal ρ⋆ = 0.95 therefore represents a

compromise: it keeps enough history to exploit pre-2000 predictability while retaining just enough

forgetting to limit the damage in later years.

Computational cost. Execution time is modest—about 305 seconds at ρ⋆—roughly one-quarter

of the nested-CV run. Because the expert learner avoids an inner cross-validation loop and up-

dates weights online, its complexity is essentially linear in the number of candidate penalties and

validation years.

Fixing the memory–decay parameter at its empirical optimum, ρ⋆ = 0.95, yields a cleaner

picture of the expert learner’s behavior. The year–by–year R2 in Figure 5 confirms a volatile

pattern of predictability—sporadic spikes above 3–4% offset by frequent dips below −3%. Relative

to the nested-CV benchmark, the expert learner now delivers a small but positive average R2

(Table 3), although annualized Sharpe ratio remains around 0.40, the value that is even lower than

before. Nearly all of the forecast efficacy is concentrated in the pre-2000 era; post-2000 performance

remains negative, indicating that the information embedded in past returns continues to fade in

more recent decades.

3Each model is trained on the most recent five calendar years and validated on the next year, with experts
corresponding to the same grid of Ridge penalties as in the nested-CV experiment.
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Table 3: Summary statistics—rolling-window expert learner (ρ⋆ = 0.95)

Metric Value

Mean CV R2 (overall) 0.23%
Mean CV R2 (pre-2000) 0.45%
Mean CV R2 (post-2000) −0.20%
Annualized portfolio return 1.90%
Annualized st. deviation 4.77%
Annualized Sharpe ratio 0.399
Execution time 304.7 sec

The cumulative-return curve suggests that, once transaction costs are ignored, the strategy

compounds capital almost exclusively during 1980–2000 and remains largely flat thereafter. Mean-

while the selected penalty λt follows a stair-step pattern, rising gradually from ≈ 0.6 to 2.7. This

upward drift signals a deterioration of the predictive signal : as lagged returns lose informational

content, the learner must apply progressively stronger Ridge shrinkage to avoid fitting noise.

Statistical comparison with Nested CV. To assess whether the rolling expert learner’s year-

by-year R2 improvements over the nested–CV benchmark are statistically significant, we perform

a Diebold–Mariano (DM) test on the fold-wise squared errors of the two strategies. Let erollt and

enestt be the squared forecast errors in year t for the rolling-window expert learner and nested-CV,

respectively, and define the loss differential

dt = erollt − enestt , t = 1, . . . , T (9)

The null hypothesis,

H0 : E[ dt ] = 0,

states that both methods have equal predictive accuracy, against the two-sided alternative H1 :

E[dt] ̸= 0. The DM statistic is

DM =
d̄√

V̂ar(d̄)

(10)

where d̄ = (1/T )
∑

t dt and V̂ar(d̄) is the sample variance of dt divided by T . In our sample (T = 42

folds) we find

d̄ ≈ −2.70× 10−6, DM ≈ −1.74, p-value ≈ 0.08.

Since |DM| < 1.96, we cannot reject H0 at the 5% level (though it is marginal at 10%). Thus

there is no strong evidence that the rolling expert learner’s accuracy differs from the nested-CV

benchmark.

Overall, although the rolling expert learner has a higher average R2, we cannot confirm that it

dominates the strictly nested walk-forward CV in accuracy. Nevertheless, it significantly outper-

forms the previous method in speed, while its investment performance (0.4 Sharpe ratio) remains
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the same.

The post-2000 deterioration of both methods, however, raises doubts about their robustness.

The evidence further reinforces the previous conclusions: once predictive models are evaluated in

genuinely out-of-sample conditions, the incremental value of past-return information is positive but

decidedly modest, and heavily dependent on the prevailing market regime.

6.2.2 Expanding Window Modification

As with the rolling variant, we first sweep the memory–decay parameter ρ on the expanding-window

learner.4 Figure 6 shows that predictive accuracy again exhibits a hump-shaped response, but the

peak is markedly higher: overall walk-forward R2 attains 0.67% at ρ⋆ = 0.85. Execution time rises

to ≈ 2 545 seconds—an eight-fold increase over the rolling learner— because each iteration refits

on an ever larger sample.

Regime differences. Using an expanding window with ρ⋆ = 0.85 boosts the pre-2000 R2 to

1.16%, roughly three times larger than the rolling version. After 2000 the accuracy figure turns

negative (−0.29%), yet the cumulative-return plot in Figure 7 shows that the strategy keeps rising

and finishes above ×4.5 the initial capital. In other words, the broader data set still earns money

in recent years even though its statistical R2 has faded. The rolling learner could not do this: once

the signal weakened it mostly moved sideways.

Penalty dynamics. Selected penalties drift upwards more steeply than in the rolling case, reach-

ing λ ≈ 3.7 by the late 2010’s (Figure 7, top-right). Because the estimation sample grows every

year, the model needs stronger shrinkage to guard against fitting noise from the large, sometimes

outdated, history.

R2 distribution. Switching from a rolling to an expanding window changes the shape of the

year-by-year R2 histograms in a noticeable way. With the rolling learner the pre-2000 histogram

is narrow, centered just above zero and punctuated by a few outliers above 3%; the post-2000

histogram shifts decisively to the left, clustering below the zero line. For the expanding learner

the pre-2000 mass moves rightward and thickens between 1% and 4%, signaling that positive years

occur more regularly. After 2000 the distribution still drifts left of zero, but it is broader and

even retains a handful of small positive bars—features almost absent under the rolling rule. Taken

together, the histograms show that the expanding window makes good years more reliably good

while not eliminating the negative drag in the later period. This is could also be seen on the R2

graph in Figure 7: R2 becomes more volatile post-2000 comparing to the rolling-window case.

Overall, keeping all past data in the training set helps to improve the investment performance

delivering an annualized return of 3.25% with a Sharpe of 0.84. The price is computing time

4Here the training sample grows cumulatively, so the expert scores reflect all history, discounted by ρt−s.
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Table 4: Summary statistics—expanding-window expert learner (ρ⋆ = 0.85)

Metric Value

Mean CV R2 (overall) 0.67%
Mean CV R2 (pre-2000) 1.16%
Mean CV R2 (post-2000) −0.29%
Annualized portfolio return 3.25%
Annualized st. deviation 3.88%
Annualized Sharpe ratio 0.837
Execution time 2 544.8 sec

(about eight times slower than the rolling setup). This trade-off suggests that expanding windows

significantly out-perform the previous methods, especially if accompanied by a fine-tuned memory

decay parameter.

6.3 Gaussian Process Thompson Sampling Bandit

We now turn to the Gaussian–Process Thompson bandit. Two tuning parameter matter: (i) the

exploration batch size B determining how many arms we try each year besides the current best

(i.e., alternative λ values to test), and (ii) the memory decay factor ρ used when updating past

rewards.

Tuning B. Figure 8 shows a clear hump–shape in accuracy as we vary the number of exploratory

arms evaluated each year. Pure exploitation (B = 0) already reaches a respectable R2 of about

0.52%, but performance peaks around B = 5 at 0.62%. Interestingly batches below 5 dilute

the informational gain per extra fit and the curve drifts back down (e.g., B = 3 delivers only

0.28%). The time cost moves in the opposite direction: because only the B sampled penalties are

re–estimated each round, runtime grows roughly linearly in B—from roughly 130 seconds at B = 0

to about 450 seconds at B = 6.

Sensitivity to forgetting. Sweeping the decay parameter confirms the regime asymmetry seen

before (Figure 9): before 2000, R2 rises with weaker forgetting (peak ≈ 0.96% when old data are

kept); after 2000, performance hovers around zero and turns negative once past rewards dominate.

Regime differences. At B⋆ = 5 the pre-2000 mean R2 is 0.96%, the post-2000 mean is −0.09%.

The histograms in Figure 10 echo the expert-learner pattern: a tight right shift before 2000 and a

leftward drift afterwards, though the bandit retains a few positive years even in the later period.

Notably, the algorithm chooses at the maximum grid value (λ = 10) during 2009–2019, signaling

that the return signal is weak and heavy shrinkage is preferred.

Penalty path. The penalty path reinforces this regime split. In the early years, λt drifts down

towards moderate values (≈ 0.6–2) as the GP learns that mild shrinkage pays off. Post-2008,
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the bandit repeatedly jumps to the top of the grid (λ = 10), signaling that the reward surface

has flattened and the model must heavily regularize to avoid chasing noise. Despite the weaker

statistical fit, the cumulative-return curve still trends upward after 2000, indicating that modest,

noisy signals can translate into economic gains once transformed into portfolio weights (Figure 10).

In short, the bandit adapts fast enough to keep the strategy profitable, but the quality of the

statistical signal deteriorates markedly in the later regime.

Economic value and cost. With an overall CV R2 of 0.61%, the bandit attains essentially the

same predictive precision as the expanding online expert learner (0.67%) while running in ≈ 726

seconds—far faster than the nested CV benchmark (∼ 1100 s) and the expanding expert learner

(∼ 2545 s), though slower than the rolling expert (∼ 305 s) (as bandit approach uses an expanding

data setting). Economically, it delivers an annualized return of 3.30% with a Sharpe of 0.85,

matching the expanding learner’s payoff at a lower computational bill. In short, the GP–bandit

strikes a favorable accuracy–speed trade-off: near-top R2 and Sharpe, without the heavy inner-loop

cost of full cross-validation or ever-growing refits.

Table 5: Summary statistics—GP Thompson bandit (B⋆ = 5)

Metric Value

Mean CV R2 (overall) 0.61%
Mean CV R2 (pre-2000) 0.96%
Mean CV R2 (post-2000) −0.09%
Annualized portfolio return 3.30%
Annualized st. deviation 3.87%
Annualized Sharpe ratio 0.852
Execution time 725.9 sec

6.4 Meta-Learner

A key observation from the results is that the predictive effectiveness of the meta-learner improves

significantly only after a sufficient number of historical tasks are accumulated (empirical evidence

suggests this is around 30-40 tasks, which is consistent with the behavior of our model). This

aligns with the general principle in meta-learning: the learner requires enough examples of past

environments and their associated optimal hyperparameters to generalize reliably to new ones.

This translates into longer training window needed compared with other models. Indeed, in

order to make the Meta-Learner work we needed to pre-train it using the data from 1972 to 1989,

meanwhile the other models are flexible in the choice of the training window length.

Penalty dynamics. The penalty parameter λ remains low from 1989 to around 2010, suggest-

ing the model found strong signals in lagged returns. After 2010, λ rises sharply and remains

elevated—indicating reduced signal strength and a shift toward stronger regularization. This co-

incides with the model reaching maturity (i.e., having enough tasks for robust training), enabling
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it to better adapt to evolving market conditions, such as increased noise and competition from

systematic strategies. Furthermore, this increase in λ is not only a function of model maturity, but

also likely reflects structural changes in financial markets. As we approach the mid-2000s and be-

yond, the meta-learner detects a decline in exploitable signal strength, adapting its penalty upward

in response. This aligns with a well-documented evolution in the microstructure of the market:

the proliferation of systematic hedge funds, high-frequency trading, and increased competition in

quantitative strategies has compressed the predictability of returns. The model effectively inter-

prets this shift by selecting stronger regularization to dampen noise and prevent overreaction to

increasingly random or transient patterns.

R2 distribution. When analyzing the behavior of the R2 we notice that it is relatively similar

to that of previous models: pre-2000 values cluster on the positive side (mean ≈ 0.92%) with a

few large spikes, whereas the post-2000 distribution widens and shifts left (mean ≈ −0.79%) and

includes several strongly negative years (Figure 11).

Economic value and cost. The meta-learner delivers economic performance broadly in line with

the other models. The price is data hunger : the model must be pre–trained on a sizable history

(here 1972–1989) to accumulate enough “tasks” for the meta-level to generalize. With too few

tasks the mapping from regimes to optimal λ is poorly identified and the forecasts become erratic,

making the approach unsuitable for short samples or newly listed assets. In short, once trained

enough the meta-learner is competitive, but it cannot be deployed straight away—it requires extra

pretraining time and a long initial window to stabilize its decisions.

However, once the number of tasks increases; typically after 30 to 40, the meta- learner becomes

more robust and begins to generalize better. We observe a shift in its recommended λ values: it

selects higher regularization levels, which act to smooth the signal, reduce overfitting, and emphasize

only the most persistent return patterns. Hence, although the R2 metrics decrease slightly during

this phase, the economic utility of the model improves, as evidenced by growth of cumulative

returns.

Table 6: Rolling Meta-Learner Performance

Metric Value

Mean CV R2 (overall) 0.76%
Mean CV R2 (pre-2000) 0.92%
Mean CV R2 (post-2000) −0.79%
Annual return 2.63%
Annual volatility 3.44%
Sharpe ratio 0.77
Execution time 4 164 .3 sec

20



7 Conclusion

Table 7: Performance comparison across tuning schemes

Method CV R2 (%)
Portfolio

Time (sec)
Return St. dev. Sharpe

Nested walk–forward CV −0.18 1.98 4.77 0.416 1 099
Rolling expert (ρ⋆ = 0.95) 0.23 1.90 4.77 0.399 305
Expanding expert (ρ⋆ = 0.85) 0.67 3.25 3.88 0.837 2 545
GP–Thompson bandit (B⋆ = 5, ρ⋆ = 1) 0.61 3.30 3.87 0.852 726
Rolling meta-learner (Y ⋆ = 10) 0.76 2.63 3.44 0.770 4 164

This thesis set out to examine whether allowing the degree of regularization in cross-sectional

return prediction models to adapt over time leads to improved performance; both statistically and

economically. We aimed to test not only whether adaptive tuning of the Ridge penalty yields better

out-of-sample predictions, but also how different strategies for achieving this adaptation compare.

To this end, we evaluated a progression of methods: Nested Walk-Forward Cross-Validation, Follow-

the-Leader Online Expert Learner, Gaussian Process Thompson Sampling Bandit, and a Meta-

Learner.

Among methods evaluated, the nested walk-forward CV baseline exhibits the lowest predictive

performance, with a negative out-of-sample R2 of −0.18%. Despite this, its portfolio delivers an

annualized return of 1.98%, slightly outperforming the rolling-window expert, which achieves only

1.90% but comming far short of other methods. This underperformance is likely driven by the

limited number of observations available at each step, which makes the λ-selection process noisy

and prone to overfitting. The nested CV struggles to extract stable signals from these small samples,

resulting in weak generalization and inconsistent portfolio returns.

The rolling-window expert strategy improves stability by averaging λ-scores over time, but

remains limited by its myopic focus on recent performance, yielding modest gains in both pre-

dictability (R2 = 0.23%) and economic performance (Sharpe = 0.399).

The expanding-window expert further improves by integrating longer-term performance mem-

ory, achieving higher predictability (R2 = 0.67%) and a strong Sharpe ratio (0.837), though at

the cost of much higher computational cost as the model took 2545 seconds compared to the 1099

seconds and 305 seconds for the nested CV and rolling-window expert respectively.

The GP bandit exhibits a slightly higher Sharpe (0.852) with slightly lower R2 (R2 = 0.61),

balancing exploration (i.e. trying less-tested λ values to gather information) and exploitation (using

λ values that have performed well so far) via a Bayesian updating scheme that delivers robust and

consistent returns (3.30%) at moderate computational cost (726 seconds).

Finally, the meta-learner achieves the highest overall predictability (R2 = 0.76%) and robust

economic performance (Sharpe = 0.770), despite lagging slightly in raw returns behind the GP

bandit (3.30%) and expanding-window expert (3.25%). This highlights the value of learning λ

values directly from historical regimes, though the method is computationally very expensive (4164

seconds) and requires more training data compared to others.

Overall, although such strategies as expanding-window experts and meta-learners are competi-
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tive, the GP bandit approach offers the best tradeoff between predictability, speed, and profitability.

This is confirming the benefit of balancing exploration and exploitation in adaptive regularization

of Ridge regression.

Moreover the key findings suggest that dynamic tuning of regularization parameters is essential

in the presence of structural changes, such as the weakening signal in commonly used predictors like

past returns, particularly after the year 2000. Adaptive approaches, were able to adjust regulariza-

tion strength in response to shifting conditions, delivering significant economic outcomes despite

sometimes low statistical R2 values. However, these gains often came at the cost of increased

computational complexity or the need for large training windows. These results carry important

practical implications. In modern financial environments characterized by low signal-to-noise ratios

and competitive erosion of alpha, robust model selection and continuous tuning are essential.

Several limitations should be acknowledged. First, our evaluation hinges only on R2, a statistical

measure that may not fully capture economic relevance. Second, the modeling scope is limited to

linear and moderately adaptive models, omitting more complex approaches such as deep learning.

Third, the empirical setting is confined to a single asset class and region, which may somewhat

limit the generalizability of our results.

Future research could extend this work along multiple dimensions. Incorporating recurrent neu-

ral networks such as LSTMs may allow for richer modeling of temporal dependencies. Optimizing

models directly for financial performance metrics, such as the Sharpe, could offer a more eco-

nomically meaningful or tangible objective. Exploring dynamic ensembling strategies may further

enhance adaptability, while live testing in paper trading environments could help validate practical

relevance. Furthermore, one could apply the same principle of time varying hyperparameters to

other machine learning methods on different hyperparameters than the regularization parameter in

the Ridge regression. It would be undoubtedly interesting to study the behavior of more than one

hyperparameter, but likely much more computationally intensive. In sum, this thesis highlights

the promise and challenges of adaptive regularization in asset pricing, and points toward fruitful

directions for extending its insights.
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Appendix

Figure 1: Cumulative Performance of Ridge Regression strategy with LOYO Cross-Validation.
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Figure 2: Coefficients for past returns. Each dot corresponds to one lag (k = 2, . . . , 120); stems
indicate the sign and magnitude of the estimated Ridge coefficients.
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Figure 3: Diagnostics for the nested walk-forward CV experiment. Top left: annualized out-of-
sampleR2 by validation year. Top right: Ridge penalty λ selected each year. Middle: distribution
of yearly R2 before (left panel) and after 2000 (right panel). Bottom: Cumulative Performance of
Nested Walk-Forward strategy with LOYO Cross-Validation.
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Figure 4: Rolling-window expert learner: effect of memory decay ρ. Top-left: Overall annualized
CV R2. Top-right: Post-2000 R2. Bottom-left: Pre-2000 R2. Bottom-right: Execution time.
The optimal value ρ⋆ = 0.95 maximizes overall R2 at 0.23%.
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Figure 5: Rolling–window expert learner at the optimal memory decay ρ⋆ = 0.95. Top-left:
annualized out-of-sample R2 by validation year. Top-right: Ridge penalty λ selected each year.
Middle: Distribution of yearly R2 before (left panel) and after 2000 (right panel). Bottom:
Cumulative Performance of Rolling Window Online Expert Learner strategy.
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Figure 6: Expanding-window expert learner: effect of memory decay ρ. Top-left: overall annual-
ized CV R2. Top-right: Post-2000 R2. Bottom-left: Pre-2000 R2. Bottom-right: Execution
time. The optimal value ρ⋆ = 0.85 maximizes overall R2 at 0.67%.
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Figure 7: Expanding-window learner at ρ⋆ = 0.85. Top-left: annualized out-of-sample R2 by
validation year. Top-right: Ridge penalty λ selected each year. Middle: Distribution of yearly
R2 before (left panel) and after 2000 (right panel). Bottom: Cumulative Performance of Expanding
Window Online Expert Learner strategy.
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Figure 8: Gaussian Process Bandit Learner: effect of batch size B. Top-left: overall annualized
CV R2. Top-right: Post-2000 R2. Bottom-left: Pre-2000 R2. Bottom-right: Execution time.
CV R2 peaks at B⋆ = 5.
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Figure 9: Gaussian Process Bandit Learner: effect of memory decay ρ. Top-left: overall annualized
CV R2. Top-right: Post-2000 R2. Bottom-left: Pre-2000 R2. Bottom-right: Execution time.
CV R2 peaks at ρ⋆ = 1.
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Figure 10: GP–Thompson bandit at B⋆ = 5 and ρ⋆ = 1. Top-left: annualized out-of-sample R2

by year. Top-right: selected Ridge penalty λt. Middle: yearly R2 histograms before (left) and
after 2000 (right). Bottom: cumulative portfolio return.
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Figure 11: Diagnostics for the rolling Meta-Learner experiment. Top left: annualized out-of-
sampleR2 by validation year. Top right: Ridge penalty λ selected each year. Middle: distribution
of yearly R2 before (left panel) and after 2000 (right panel). Bottom: Cumulative Performance of
rolling Meta-Learner strategy.
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